Clubroot Management Update

Clubroot Steering Committee
April 30, 2020

Bruce D. Gossen and Mary Ruth McDonald
University of Guelph and AAFC Saskatoon, Canada

Contributions from Afsaneh Sedaghatkish, Sarah Drury, Andrew McLean, Justin Robson, Dongniu Wang, Chithra Karunakaran, Gary Peng
Clubroot Management:

- Whole genome sequencing and new virulent pathotypes (published)
- Effect of grass cover crops and rotation crops on resting spore concentrations in soil
- Fumigation and solarization
- Boron as a soil amendment with boron insensitive Brassicas
Whole genome sequencing to determine the genome similarity of single-spore isolates and field collections from locations in Canada, the USA, and China:

Sequenced 43 collections, including 9 single spore isolates, mostly from Canada. They did not cluster by pathotype or host. Some clustered by geographic region.
Heat maps of SNPs

Total of 9727 genes in *P. brassicae* genome

Normandin and MCRS collections before and after the change of pathotype

There is about a 50% difference in SNPs from before and after

Selection, rather than single mutations responsible for the changes

Balancing selection
Capturing single resting spores with a micromanipulator- a more efficient method to produce single spore isolates of *P. brassicae*

Micromanipulation of a single spore

(A) inverted microscope, (B) glass micropipette, C. micromanipulator, & D. isolation plate

(D) selection and collection of a single spore, and (E) placement of a single spore in Hoagland’s solution containing a 3-day old canola
Cover crops and rotation crops to stimulate the germination of resting spores

Materials & methods

• Soil with 5×10^5 resting spore per gram
• Crops grown for 8 weeks
• qPCR assessment of resting spores

Crops:

• Shanghai pak choi (Brassica rapa L.) susceptible check
• Smooth bromegrass (Bromus inermis L.) a common seed lot
• Meadow bromegrass (B. riparius R.) cv. Fleet
• Perennial ryegrass (Lolium perenne L.) cv.’s Norlea, All Star, and Fiesta

Afsaneh Sedaghatish Ph.D. thesis
Effect of grass species and cultivar on resting spore concentration of *P. brassicae* in soil (Based on qPCR, n = 6)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Grass cultivar</th>
<th>Spore conc. (spores g⁻¹ soil)</th>
<th>Root dry wt. (g pot⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-plant soil</td>
<td></td>
<td>1.6 x 10⁶</td>
<td></td>
</tr>
<tr>
<td>No plant (control)</td>
<td></td>
<td>1.2 x 10⁶ a</td>
<td></td>
</tr>
<tr>
<td>Perennial ryegrass</td>
<td>Norlea</td>
<td>5.9 x 10⁵ a</td>
<td>6.35 a</td>
</tr>
<tr>
<td></td>
<td>All Star</td>
<td>4.9 x 10⁵ a</td>
<td>6.32 a</td>
</tr>
<tr>
<td></td>
<td>Fiesta</td>
<td>2.7 x 10⁵ b</td>
<td>2.73 b</td>
</tr>
<tr>
<td>Meadow bromegrass</td>
<td>Fleet</td>
<td>5.0 x 10⁵ b</td>
<td>6.44 a</td>
</tr>
<tr>
<td>Smooth bromegrass</td>
<td>Common</td>
<td>4.6 x 10⁵ b</td>
<td>3.85 b</td>
</tr>
</tbody>
</table>

The initial resting spore concentration was higher than intended
No correlation between resting spore concentration and root weight
What about rotation crops?

Resting spore concentration in soil with different crops

<table>
<thead>
<tr>
<th>Crop</th>
<th>Cultivar</th>
<th>Spore conc. g⁻¹ soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soybean</td>
<td></td>
<td>469,000 a</td>
</tr>
<tr>
<td>No plant (control)</td>
<td></td>
<td>310,000 b</td>
</tr>
<tr>
<td>Barley</td>
<td>Trochu</td>
<td>266,000 bc</td>
</tr>
<tr>
<td>Field pea</td>
<td>CDC Meadow</td>
<td>229,000 bc</td>
</tr>
<tr>
<td>Ryegrass</td>
<td>Norlea</td>
<td>183,000 bc</td>
</tr>
<tr>
<td>Wheat</td>
<td>AAC Connery</td>
<td>155,000 c</td>
</tr>
</tbody>
</table>

Plants grown for 8 weeks in the soil inoculated with 5×10^5 resting spores mL⁻¹ based on qPCR (n = 6).

Spring wheat is a good rotation crop and may help to reduce resting spore numbers. Still lots of variability in the data.
For a quicker effect: Fumigation and/or solarisation
Or boron?

Fumigated in late June or July
Chloropicrin (Pic Plus 164, 280 L/ha)
Metam sodium (Busan 150, 300 L/ha)
Immediately covered with totally impermeable film (TIF)

Uncovered check and untreated- tarped check

After 2 weeks, the tarp was removed, soil samples taken and a susceptible crop- pak choi – was seeded. Assessed 5 weeks later.
Bioassay with clubroot susceptible pak choi

Untreated untarped

Fumigated
Clubroot severity in pak choy following fumigation -2019

- **Solarisation?**
 - Ave temp in untarped plot 21.8 °C
 - Ave temp in tarped plot 29.1 °C
 - Temperatures are lower than published for solarization

- **Anaerobic soil disinfestation?**

Severity (0-100)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Severity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untreated</td>
<td>b</td>
</tr>
<tr>
<td>Busan high</td>
<td>a</td>
</tr>
<tr>
<td>TIF</td>
<td>a</td>
</tr>
<tr>
<td>Busan low</td>
<td>a</td>
</tr>
<tr>
<td>PicPlus low</td>
<td>a</td>
</tr>
<tr>
<td>PicPlus high</td>
<td>a</td>
</tr>
</tbody>
</table>

Treatment explanation
- **Busan** = metam sodium
- **PicPlus** = chloropicrin
Boron suppresses clubroot development
But can be phytotoxic
Use boron with boron insensitive varieties?
Effect of a drench application of boron at 8 kg/ha on clubroot severity in the field. Mean of 10 sensitive and 9 insensitive lines.

Next step: Assess plants in the synchrotron (Canada Light Source) to determine boron content of roots and leaves.
Boron K-edge XANES spectra collected on roots

Changes in spectra with added B indicate more boron-oxygen bonds
Clubroot Management: Conclusions

- Grass cover crops and rotation crops may reduce resting spores in soil faster than if soil was left fallow
 - However, the first results from field trials showed higher resting spores under perennial ryegrass

- New virulent pathotypes are selected from existing genotypes (not recent mutations)
- P. brassica exhibits balancing selection to preserve many genotypes
 - Continue to develop single spore isolates for research

- Solarization using totally impermeable film could be an approach to manage small patches of clubroot.

- Could boron be used to suppress clubroot using boron insensitive lines of B. napus?
Questions?
Acknowledgements

• Canola Council of Canada
• Agriculture and Agri-Food Canada
• Clubroot Mitigation Initiative
 ▪ Canola Cluster of Growing Forward 2
 ▪ Canadian Agricultural Partnership
 ▪ Ontario Canola Growers Association
• University of Guelph HQP Program
• Ontario Agri-Food Innovation Alliance