The Impact of Clubroot Resistant Canola Cultivars on *Plasmodiophora brassicae* Resting Spore Concentrations in the Soil

T.W. Ernsta, S. Kherb, D. Stantonc, D.C. Renniea, S.F. Hwangd, and S.E. Strelkova*

aDepartment of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5 Canada
bAlberta Agriculture and Forestry, #206, J.G. O’Donoghue Building 7000-113 Street, Edmonton, Alberta, T6H 5T6, Canada
cDuPont Pioneer, 22220 Highway 16, Ardrossan, Alberta, T8E 2L4, Canada
dCrop Diversification Centre – North, Alberta Agriculture and Forestry, Edmonton, AB T5H 6H3, Canada
Presentation Outline

• Objectives/Hypotheses
 - *Plasmodiophora brassicae* background
 - *P. brassicae* resting spore dynamics

• Experimental Design and Materials/Methods

• Results & Conclusions:
 recommended best practices and potential future research
Plasmodiophora brassicae

- Soil-borne plasmodial endoparasite of cruciferous plants (Gibbs, 1932, Karling, 1968)

- Every species from all genera of the Brassicaceae family are expected hosts of *P. brassicae* (Dixon, 2009)

- Host plants regardless of age are susceptible to *P. brassicae* infection when growth still occurs (Kunkel, 1918)
Background

• Clubroot resistant (CR) canola cultivars produce less galled root mass and less inoculum, than susceptible cultivars.
 (Hwang et al., 2012b, Hwang et al., 2015)

• Hwang et al. (2011) Suggested that: at low to medium inoculum density commercially available resistant canola cultivars may prevent further propagation of *P. brassicae* inoculum

• Risk: cruciferous weeds, canola volunteers and genetic off-types in seed lots will increase the inoculum levels
Objectives

• Determine the effect of resistant cultivars on *P. brassicae* soil inoculum loads:
 • at various initial levels of infestation
 • under various field conditions
 • within various crop rotations

• To determine the level of clubroot incidence and severity in CR cultivars within canola producing fields of Alberta
Materials & Methods

• Post-Harvest soil sampling was accompanied by incidence and severity ratings, calculate ID%
Figure - Distribution of fields monitored for *Plasmodiophora brassicae* resting spore concentration from 2010-2013 in Alberta, Canada.

Embedded image (top left) illustrates the within-field distribution of sampling points for one sample field.

- sampling points had CR canola cultivated in various rotations
- control sampling points were closely associated with experimental points but remained fallow

Cumulative infestations = total number of confirmed clubroot infestations in specific counties or municipalities (adapted from Strelkov and Hwang 2014).
Soil Preparation & Molecular Detection

- Georeferenced Composite soil samples from each time period were dried and homogenized

- DNA extracted from soil samples
 - (PowerSoil DNA Isolation Kit, MO BIO Laboratories, Carlsbad CA, USA)

- Non-specific PCR
 - ITS1/ITS4 primers (Korabecna et al. 2007)

- Conventional PCR - \(Pb\) specific
 - TC1F/TC1R primers (Cao et al. 2007)

- qPCR - \(Pb\) specific
 - DC1F/DC1R primers (Rennie et al. 2011)
Bio-Assays

• Inoculum potential of infested soil samples assessed via greenhouse bioassays.

• Naturally infested soil and potting medium
 – Volume 1:1 Ratio

• The susceptible cultivar Chinese cabbage (*Brassica rapa* ssp. *pekinensis* L.) cv. Granaat grown in infested soil and rated for clubroot severity and incidence after 6 weeks
Results

• Over 8500 soil samples collected
 – forming 895 composite samples
 – from 182 GPS marked locations
 – within 17 different fields situated across Alberta.

• success of DNA extraction confirmed
 – PCR amplification with the non-specific primers ITS1 and ITS4
 (Korabecna et al. 2007)
 – DNA was amplified successfully from all samples tested
Relationship between *Plasmodiophora brassicae* resting spore concentration in infested soil as determined by quantitative PCR (qPCR) and index of disease (ID) on susceptible (‘S’) *Brassica napus* cv. Granaat in greenhouse bioassays.
Figure - Cumulative reaction of *Plasmodiophora brassicae* resting spore concentration to the cultivation of CR canola (empty bars) and fallow (filled bars) within all fields of the study seeded to canola between 2010-2013. No significant treatment, time, or treatment x time effects.
Conclusions 1

- DNA extraction was successful and reliable
- qPCR results reflected soil inoculum potential (i.e. the likelihood infection was observed on a susceptible cultivar during greenhouse bioassays)
- CR canola cultivars impact on *P. brassicae* resting spore germination = not significantly different from germination under fallow/non-host conditions, CR canola does not appear to function as a useful bait crop under field conditions in Alberta
Figure 2-6. Index of disease (ID, %) in fields seeded with clubroot resistant canola when the independent variable ‘initial *P. brassicae* resting spore concentration’ is assessed categorically.
Mean concentration of *Plasmodiophora brassicae* resting spores in the soil over any two year period within 2010-2013.

- **Spring year-1**: 0.5 x 10^5 spores g^-1 soil
- **Fall year-1**: 0.1 x 10^5 spores g^-1 soil
- **Spring year-2**: 1.5 x 10^5 spores g^-1 soil
- **Fall year-2**: 1.2 x 10^5 spores g^-1 soil

Figure - Mean concentration of *Plasmodiophora brassicae* resting spores in the soil over any two year period within 2010-2013.

- **clubroot resistant canola cultivated in the first year; Rotation: CR canola - Non-Host**
- **no susceptible host cultivated in either year; Rotation: Fallow - Non-Host**
Figure - Concentration of *Plasmopora brassicae* resting spores in the soil of fields with a rotation that includes clubroot resistant (CR) canola grown in a 1-in-2 year rotation (a) as well as a 1-in-4 year rotation (b) compared to control plots. Rotation in both graphs = CR canola year-1 → non-host crop in subsequent years, represented by filled-black squares; Fallow year-1 → non-host crop in subsequent years, represented by empty circles.
Conclusions 2

- Generally low clubroot incidence and severity within observed CR canola cultivated fields of Alberta between 2010-2013
 - ID generally < 4.15%

- There is a potential lag in the release of new mature *P. brassicae* resting spores into the soil after CR canola cultivation.
 - Significant increases in resting spore concentrations were detected the year following cultivation of CR canola.

- Minimum ≥2-year break from CR canola in infested fields
 - a 1-year break from CR canola cultivation can reduce *P. brassicae* concentration to initial levels *(HOWEVER, enriched with virulent pathotypes??? Likely)*
 - Large declines in resting spore concentration can be achieved with a ≥2-year break from *Brassica* cultivation.
Thanks

- Dr. Stephen Strelkov and Dr. Sheau-Fang Hwang
- Dan Stanton and Dr. Swaroop Kher
- Derek Rennie, Victor Manolii, Ileana Strelkov, Tiesen Cao, and Reem Aboukhaddour
- Labmates: Barb Ziesman, Krista Zuzak, Mirko Tabori, Van Anh Thi Tran, Michelle Fraser, Alireza Akhavan, and Homa Askarian
- Financial support from the GF2 program (AAFC and CCC), the Clubroot Risk Mitigation Initiative, and NSERC (IPS-1 Industrial Internship Scholarship along with Pioneer Hi-Bred Production LP) also is acknowledged.
- Thanks to my lovely wife Agnes Ernst, and my parents Bill & Donna Ernst for all their support
QUESTIONS

?