Mechanisms and generational durability of clubroot resistance associated with stacked CR genes

Song T, Tonu M, Wen R, Yu F, Peng G
Resistance is the key to clubroot management

This canola cultivar carries a gene resistant to **pathotype 3** of *Plasmodiophora brassicae*
New *Pb* pathotypes overcame the resistance in commercial varieties (carry a single CR gene?)

Canola varieties resistant to pathotype 3
Some CR sources, mostly *B. rapa*, were identified against old *P. brassica* pathotypes found in Canada.

<table>
<thead>
<tr>
<th>Brassica spp.</th>
<th>Pathotype 2</th>
<th>Pathotype 3</th>
<th>Pathotype 5</th>
<th>Pathotype 6</th>
<th>Pathotype 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (S)</td>
<td>97 e #</td>
<td>99 f</td>
<td>99 d</td>
<td>98 e</td>
<td>98 e</td>
</tr>
<tr>
<td>B. nigra</td>
<td>0 a</td>
<td>0 a</td>
<td>0 a</td>
<td>1 a</td>
<td>0 a</td>
</tr>
<tr>
<td>B. nigra</td>
<td>40 d</td>
<td>52 e</td>
<td>39 c</td>
<td>46 d</td>
<td>44 d</td>
</tr>
<tr>
<td>B. oleracea</td>
<td>0 a</td>
<td>0 a</td>
<td>0 a</td>
<td>0 a</td>
<td>2 ab</td>
</tr>
<tr>
<td>B. oleracea</td>
<td>0 a</td>
<td>1 ab</td>
<td>1 a</td>
<td>3 ab</td>
<td>0 a</td>
</tr>
<tr>
<td>B. rapa</td>
<td>3 b</td>
<td>16 cd</td>
<td>18 b</td>
<td>16 bc</td>
<td>10 bc</td>
</tr>
<tr>
<td>B. rapa</td>
<td>17 c</td>
<td>18 d</td>
<td>25 b</td>
<td>26 c</td>
<td>19 c</td>
</tr>
<tr>
<td>B. rapa</td>
<td>6 b</td>
<td>5 bc</td>
<td>1 a</td>
<td>2 a</td>
<td>4 ab</td>
</tr>
<tr>
<td>B. rapa</td>
<td>1 a</td>
<td>1 ab</td>
<td>2 a</td>
<td>1 a</td>
<td>2 ab</td>
</tr>
<tr>
<td>B. rapa</td>
<td>35 d</td>
<td>43 e</td>
<td>46 c</td>
<td>55 d</td>
<td>56 d</td>
</tr>
<tr>
<td>B. rapa</td>
<td>43 d</td>
<td>54 e</td>
<td>49 c</td>
<td>48 d</td>
<td>40 d</td>
</tr>
</tbody>
</table>

Average disease severity index

No single CR gene was effective against all new pathotypes.
Re-synthesizing amphidiploid CR canola species

<table>
<thead>
<tr>
<th>Species</th>
<th>Donor lines</th>
<th>Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. napus</td>
<td>B. oleracea (Rcr7) × B. rapa (Rcr3)</td>
<td>Seeds</td>
</tr>
<tr>
<td>B. juncea</td>
<td>B. rapa (Rcr4, Rcr8 or Rcr9) × B. nigra (Rcr6)</td>
<td>Seeds</td>
</tr>
</tbody>
</table>

B. oleracea × *B. rapa* → *B. napus*
DH *B. napus* lines with 2 or 3 CR genes including *Rcr1* (A3), CRM (A3) and CRB (A8)

<table>
<thead>
<tr>
<th>Crossing</th>
<th>CR gene on</th>
<th># CR genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rcr1</td>
<td>A3</td>
<td>1</td>
</tr>
<tr>
<td>CRM</td>
<td>A3</td>
<td>1</td>
</tr>
<tr>
<td>CRB</td>
<td>A8</td>
<td>1</td>
</tr>
<tr>
<td>CRB x Rcr1</td>
<td>A3, A8</td>
<td>2</td>
</tr>
<tr>
<td>CRM x CRB</td>
<td>A3, A8</td>
<td>2</td>
</tr>
<tr>
<td>CRB x CRM</td>
<td>A8, A3</td>
<td>2</td>
</tr>
<tr>
<td>Rcr1 x (CRM x CRB)</td>
<td>A3, A3, A8</td>
<td>3</td>
</tr>
</tbody>
</table>
Key research questions:

- Are these new canola varieties/lives with stacked CR genes effective against 5X (now X)?
- Will stacked CR genes provide more sophisticated resistance mechanisms?
- Will the resistance involving stacked CR genes be durable? (vs. CR gene rotation, to be worked on)
- Deployment strategies - more durable clubroot resistance
<table>
<thead>
<tr>
<th>Pb pathotype population</th>
<th>$A3_M \times A8$ (#5)</th>
<th>$A8 \times A3_1$ (#14)</th>
<th>$A8 \times A3_M$ (#15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5X (L-G2)</td>
<td>Susceptible</td>
<td>Partially resistant</td>
<td>Partially resistant</td>
</tr>
<tr>
<td>5X (L-G3)</td>
<td>Susceptible</td>
<td>Partially resistant</td>
<td>Partially resistant</td>
</tr>
</tbody>
</table>
Resistance to pathotype 5X varied among double CR-gene lines resulting from reciprocal crosses.

P. brassicae 5x L-G2

P. brassicae 5x L-G3

(CRM x CRB) (CRB x CRM) (CRB x Rcr1)
I. Transcriptome analysis (RNA-seq): Canola lines with two stacked CR genes (A3, A8) against pathotype 5X
Transcriptome analysis of Rcr1 against pathotype 3 of P. brassicae: RNA-seq

- Regulation of primary metabolic process
- Anatomical structure development
- Cellular component organization

Defense response

Up regulated pathways
- Jasmonic acid/ethylene
- Deposition of callose

Down regulation
- Auxin biosynthesis
- Cell growth/development
Synchrotron-based Fourier transform infrared spectromicroscopy – cell wall modification

- Increased lignin & phenolic biosynthesis
- Supports RNA-seq: Callose deposition
- Via up-regulation of phenylpropanoid pathway – likely activated by *BrPAL1*
Infection can occur in partially resistant lines (A8 x A3, #14), but limited mostly to root hairs/epidermal cells.

P. brassicae zoospores in root hairs
P. brassicae plasmodia in root epidermis (confocal)
Characterizing resistance based on epidermal and cortical infection (5X)

Nile red stains intracellular lipid droplets of *P. brassicae*
Resistance erosion

Repeated exposure to the same pathogen population showed reduced resistance on some varieties carrying a single CR gene, even in the 2nd generational cycle.
Mix resting spore into soil (1E +7/g)
(1st cycle only)

2. Generational resistance durability (repeated exposure)

Seeding

Resting spore quantified (qPCR) on each rep before each cycle

Allow 3 wks for galls to mature before planting

Galls go back to original soil

Cut galls

Repeating in 5 cycles

Clubroot rating
(6 weeks post inoculation)

Three replicated “tubs” per treatment in each generational cycle

Mix resting spore into soil (1E +7/g)
(1st cycle only)

2. Generational resistance durability (repeated exposure)

Seeding

Resting spore quantified (qPCR) on each rep before each cycle

Allow 3 wks for galls to mature before planting

Galls go back to original soil

Cut galls

Repeating in 5 cycles

Clubroot rating
(6 weeks post inoculation)

Three replicated “tubs” per treatment in each generational cycle
Disease Severity Index (%) for canola lines carrying single- or multi-CR genes exposed to pathotype 5X (L-G3) in 5 generational rounds.

The disease severity index on Westar was 100%.
Canola lines carrying two CR genes (A8/A3) exposed to the 5X population L-G3 in 5 generational cycles
Canola line carrying *Rcr1* (A3) alone exposed to 5X L-G3 in five generational cycles.
Canola line with CRB (A8) exposed to the same pathotype 5X (L-G3) in five generational cycles
Resting-spore concentration when clubroot galls were all recycled back into the soils continuously

Double genes - CRB (A8)/Rcr1 (A3)

Double genes - CRB (A8)/CRM (A3)
Single CR gene: CRB (A8)

Single CR gene: Rcr1 (A3)
Summary

- CR genes on A3 or A8 are effective against pathotypes 2, 3, 5, 6 and 8 of P. brassicae.

- Stacking these CR genes in certain ways may result in moderate resistance to P. brassicae pathotype 5X.

- This moderate-level resistance appears stable under repeated exposure to a field population of 5X (L-G3).

- The stable resistance coincided with a P. brassicae 5X inoculum decline over the generational cycles.
Acknowledgement

Technical assistance
Hornaday K, Lee J, Bush J, McGregor L

Collaborators
• Franke C – Nutrin Ag Solutions
• PSI – Quantifying Pb inoculum in soil

Funding support: SaskCanola, WGRF