Influence of nitrogen constraint on quantitative resistance to clubroot in *Brassica napus*

Pr. Maria Manzanares-Dauleux

Institute of Genetics, Environment and Plant Protection - IGEPP, France
Use of quantitative resistance (QR) to construct resistant varieties

- Quantitative variation is more abundant in nature
- QR is more difficult to overcome by pathogen populations
- Diversity of (cellular and physiological) mechanisms underlying QTL

However QR is difficult to use:

- Many genetic factors having weak effect
- Expression of QR depending on biotic and abiotic environments

How biotic (microbiota) and abiotic factors (water availability, temperature, nutritional-nitrogen constraints) can modulate the effect / expression of clubroot quantitative resistance?
Pathosystem Clubroot – *Brassicaceae*

Disease distribution in France

- Absent
- Low frequent
- Medium-frequent
- Common
- Very common

Genetics of quantitative resistance to clubroot

- Different sources of clubroot QR
- Complex genetic architecture of QR (QTL and epiQTL)
- Weak to strong QTL effects according to both host genotype and *P. brassicae* isolate

Brassica napus, *Brassica oleracea*, *Arabidopsis thaliana*
Pathosystem Clubroot - *Brassicaceae*

Disease distribution in France

- **Absent**
- **Low frequent**
- **Medium-frequent**
- **Common**
- **Very common**

Genetics of quantitative resistance to clubroot

- Different sources of clubroot QR
- Complex genetic architecture of QR (QTL and epiQTL)
- Weak to strong QTL effects according to both host genotype and *P. brassicae* isolate

Environmental factors favouring clubroot development

- Soil pH
- Soil calcium content
- Temperature
- Soil moisture
- Fertilization (nitrogen fertilization)
Pathosystem Clubroot - Brassicaceae

Disease distribution in France

- Absent
- Low frequent
- Medium-frequent
- Common
- Very common

Environmental factors favouring clubroot development

- Soil pH
- Soil calcium content
- Temperature
- Soil moisture
- Fertilization (nitrogen fertilization)

Genetics of quantitative resistance to clubroot

Different sources of clubroot QR
Complex genetic architecture of QR (QTL and epiQTL)
Weak to strong QTL effects according to both host genotype and P. brassicae isolate
Impact of Nitrogen on disease development

- Nitrogen deficiency or over fertilization not only influences plant growth and development, but also disease development

- Low / high-nitrogen supply can boost... or repress plant diseases

- Many ways in which nitrogen can positively or negatively influence plant diseases
Impact of Nitrogen on disease development

- Nitrogen deficiency or over fertilization not only influences plant growth and development, but also disease development

- Low / high-nitrogen supply can boost... or repress plant diseases

- Many ways in which nitrogen can positively or negatively influence plant diseases

What about the *Brassica napus / P. brassicae* pathosystem?

- Few studies have suggested that a high-nitrogen supply tends to reduce the damage caused by *P. brassicae* infection

- Winter oilseed rape is usually considered to have a high requirement for nitrogen

- ...But increasing demands for adaptation to low-input agricultural practices (especially low nitrogen input)
Diversity, genetics and molecular mechanisms involved in N x clubroot quantitative resistance responses
Experimental design

92 winter oilseed rape inbred lines
 Diversity set

108 doubled haploids
 ('Darmor-bzh' x 'Yudal')
 Segregating population

2 isolates (Europe)
 eH
 K92-16

5 isolates (Canada)
 SACAN-ss3
 SACAN-ss1
 ORCA-ss4
 AbotJE-ss1
 L-G1 + L-G2 + L-G3

108 doubled haploids
 ('Darmor-bzh' x 'Yudal')
 Segregating population

5 isolates (Canada)
 SACAN-ss3
 SACAN-ss1
 ORCA-ss4
 AbotJE-ss1
 L-G1 + L-G2 + L-G3

Experimental setup:
- Sowing
- Inoculation
- Differential fertilization
- DI measure
 - 7 days post sowing (dps)
 - 0 day post inoculation (dpi)
 - 56 dps
 - 49 dpi
Fully developed clubs and important symptoms are observed under both low and high-nitrogen supply...

<table>
<thead>
<tr>
<th>Clubroot class symptoms</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>2+</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>under N8 supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>under N1 supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laperche et al. 2017
Genotype-dependent modulation of the clubroot response triggered by nitrogen

Diversity of clubroot responses among 92 oilseed rape genotypes against infection by eH isolate under high and low-nitrogen supply
The influence of nitrogen supply on host clubroot response depends on both plant and pathogen genotypes.

Canadian pathotypes (William’s classification)

Y Aigu in collaboration with S. Strelkov (Univ. Alberta)

Aigu et al. in prep
Genetic architecture of N-dependent clubroot resistance

108 DH progeny from the cross Darmor-bzh x Yudal / isolate eH of $P. brassicae$

QTL architecture is similar under N1 & N8

The magnitude of the QTL effect is dependent on the fertilization level

Laperche et al. 2017
Variation of nitrogen supply exerts a switch on the effects of the two QTL controlling resting spore content.
PbBn_C02 is the main genetic factor implied in the N1-driven resistance to isolate eH
Molecular mechanisms involved in N-dependent clubroot resistance

Choice of contrasted genotypes to be compared...

‘Yudal’ HD018

Comparing dynamics of cellular responses to clubroot infection...

Sowing Inoculation Root sampling Root sampling Root sampling
Differential fertilization 7 days post sowing (dps) 21 dps 34 dps 49 dps
0 day post inoculation (dpi) 14 dpi 27 dpi 42 dpi

Metabolomic analyses
Transcriptomic analyses
Both genotypes display similar metabolic and transcriptomic responses to nitrogen deficiency in non-inoculated conditions.

<table>
<thead>
<tr>
<th>Genes regulated in response to long-term nitrogen deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Down regulated</td>
</tr>
<tr>
<td>Up regulated</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amino acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutamine</td>
</tr>
<tr>
<td>SABA</td>
</tr>
<tr>
<td>Proline</td>
</tr>
<tr>
<td>Alpha-Alanine</td>
</tr>
<tr>
<td>Glutamic acid</td>
</tr>
<tr>
<td>Aspartic acid</td>
</tr>
<tr>
<td>Asparagine</td>
</tr>
<tr>
<td>Valine</td>
</tr>
<tr>
<td>Arginine</td>
</tr>
<tr>
<td>Glycine</td>
</tr>
<tr>
<td>Threonine</td>
</tr>
<tr>
<td>Isoleucine</td>
</tr>
<tr>
<td>Tyrosine</td>
</tr>
<tr>
<td>S-Methylcysteine</td>
</tr>
<tr>
<td>Cysteine</td>
</tr>
<tr>
<td>Histidine</td>
</tr>
<tr>
<td>Tryptophan</td>
</tr>
<tr>
<td>Phenylalanine</td>
</tr>
<tr>
<td>Tyrosine</td>
</tr>
<tr>
<td>Alpha-Alanine</td>
</tr>
<tr>
<td>Methionine</td>
</tr>
</tbody>
</table>

Aigu et al. (in prep)
In inoculated roots, SA-responses are the major features in both genotypes and in both nitrogen conditions. SA-responses to infection are not sufficient to explain the low-nitrogen clubroot resistance in Yudal.
Very few transcriptomic regulations are specific to ‘Yudal x N1’

The expression of 80 genes is specifically induced in infected roots of Yudal under low-nitrogen condition

NRT genes and auxin responsive genes
Summary

✓ Oilseed rape response to clubroot can be modulated by nitrogen supply

✓ Modulation of clubroot response triggered by nitrogen depends on both plant genotype and pathogen isolate

✓ QTL PbBn-CO2 controls partial resistance under low nitrogen supply

✓ Resistance harbored by Yudal in low-nitrogen conditions

 • Does not involve massive transcriptional or metabolome reprogramming
 • Is not associated to SA-related responses

 ➢ Current work to clone QTL PbBn-CO2
Summary

Similar results were obtained in Arabidopsis:

✓ Modulation of the effect of clubroot resistance QTL by flooding (water availability during the secondary phase of the *P. brassicae* life-cycle) (Gravot et al, 2016)

✓ Modulation of the effect of clubroot resistance epigenetic QTL by temperature (Liégard et al, under revision)
Similar results were obtained in Arabidopsis:

✓ Modulation of the effect of clubroot resistance QTL by flooding (water availability during the secondary phase of the *P. brassicae* life-cycle) (Gravot et al, 2016)

✓ Modulation of the effect of clubroot resistance epigenetic QTL by temperature (Liégard et al, under revision)

Importance of linking physiological and genetic analysis for the study of abiotic-biotic stress interactions and predict the modulation of resistance in various environments
Thanks

Antoine Gravot
Mélanie Jubault
Stéphanie Daval
Kevin Gazengel
Solemn Guichard
Christine Lariagon
Fabrice Legeai
Jocelyne Lemoine
Nathalie Marnet
Maria Manzanares-Dauleux

Benjamin Liégard (PhD student)
Yoann Aigu (PhD student)
Séverine Lemarié (former PhD student)

Collaborations
Steve Strelkov (Univ. Alberta)
Philippe Huguenay (INRA Colmar)

Financial support:
Terres Inovia

Steve Strelkov (Univ. Alberta)
Philippe Huguenay (INRA Colmar)