

Influence of nitrogen constraint on quantitative resistance to clubroot in Brassica napus

Pr. Maria Manzanares-Dauleux

Institute of Genetics, Environment and Plant Protection - IGEPP France

Context

Use of quantitative resistance (QR) to construct resistant varieties

- Quantitative variation is more abundant in nature
- QR is more difficult to overcome by pathogen populations
- Diversity of (cellular and physiological) mechanisms underlying QTL

However QR is difficult to use:

Many genetic factors having weak effect

Expression of QR depending on biotic and abiotic environments

How biotic (microbiota) and abiotic factors (water availability, temperature, nutritional-nitrogen constraints) can modulate the effect / expression of clubroot quantitative resistance?

Pathosystem Clubroot - Brassicaceae

Disease distribution in France

Genetics of quantitative resistance to clubroot

Absent Low frequent Medium-frequent Common Very common

Different sources of clubroot QR Complex genetic architecture of QR (QTL and epiQTL) Weak to strong QTL effects

assica oleracea

according to both host genotype and *P. brassicae* isolate

Pathosystem Clubroot - Brassicaceae

Disease distribution in France

Genetics of quantitative resistance to clubroot

Absent Low frequent Medium-frequent Common Very common

Different sources of clubroot QR Complex genetic architecture of QR (QTL and epiQTL) Weak to strong QTL effects

> according to both host genotype and *P. brassicae* isolate

Environmental factors favouring clubroot development

- Soil pH
- Soil calcium content

ssica oleracea

- Temperature
- Soil moisture
- Fertilization (nitrogen fertilization)

rahia

Pathosystem Clubroot - Brassicaceae

Disease distribution in France

Genetics of quantitative resistance to clubroot

Absent Low frequent Medium-frequent Common Very common

ssica oleracea

Complex genetic architecture of QR (QTL and epiQTL) Weak to strong QTL effects

rahia

according to b host genotype ۱d P. brassicae is the

Environmental factors favouring clubroot development

- Soil pH
- Soil calcium content
- Temperature
- Soil moisture
- **Fertilization** (nitrogen fertilization)

Impact of Nitrogen on disease development

- Nitrogen deficiency or over fertilization not only influences plant growth and development, but also disease development
- Low / high-nitrogen supply can boost... or repress plant diseases
- Many ways in which nitrogen can positively or negatively influence plant diseases

Impact of Nitrogen on disease development

- Nitrogen deficiency or over fertilization not only influences plant growth and development, but also disease development
- Low / high-nitrogen supply can boost... or repress plant diseases
- Many ways in which nitrogen can positively or negatively influence plant diseases

What about the *Brassica napus / P. brassicae* pathosystem?

- * Few studies have suggested that a high-nitrogen supply tends to reduce the damage caused by *P. brassicae* infection
- Winter oilseed rape is usually considered to have a high requirement for nitrogen
- …But increasing demands for adaptation to low-input agricultural practices (especially low nitrogen input)

Diversity, genetics and molecular mechanisms involved in N x clubroot quantitative resistance responses

Experimental design

Fully developed clubs and important symptoms are observed under both low and high-nitrogen supply...

Genotype-dependent modulation of the clubroot response triggered by nitrogen

Diversity of clubroot responses among 92 oilseed rape genotypes against infection by eH isolate under high and low-nitrogen supply

Non N-responsive genotypes

N-responsive genotypes

Yudal

N1

N8

Laperche et al. 2017; Aigu, 2017

The influence of nitrogen supply on host clubroot response depends on both plant and pathogen genotypes

Y Aigu in collaboration with S. Strelkov (Univ. Alberta)

Canadian pathotypes (William's classification)

Genetic architecture of N-dependent clubroot resistance

108 DH progeny from the cross Darmor-*bzh* × Yudal / isolate eH of *P. brassicae*

Laperche et al. 2017

Genetic architecture of N-dependent clubroot resistance

Variation of nitrogen supply exerts a switch on the effects of the two QTL controlling resting spore content

Aigu et al. 2018

PbBn_CO2 is the main genetic factor implied in the N1-driven resistance to isolate eH

Molecular mechanisms involved in N-dependent clubroot resistance

✓ Choice of contrasted genotypes to be compared...

Comparing dynamics of cellular responses to clubroot infection...

Both genotypes display similar metabolic and transcriptomic responses to nitrogen deficiency in non-inoculated conditions

Aigu et al. (in prep)

In inoculated roots, SA-responses are the major features in both genotypes and in both nitrogen conditions

SA-responses to infection are not sufficient to explain the low-nitrogen clubroot resistance in Yudal

Aigu et al. (in prep)

Very few transcriptomic regulations are specific to 'Yudal x N1'

The expression of 80 genes is specifically induced in infected roots of Yudal under low-nitrogen condition

Summary

- ✓ Oilseed rape response to clubroot can be modulated by nitrogen supply
- Modulation of clubroot response triggered by nitrogen depends on both plant genotype and pathogen isolate
- ✓ QTL *PbBn-CO2* controls partial resistance under low nitrogen supply
- ✓ Resistance harbored by Yudal in low-nitrogen conditions
 - Does not involve massive transcriptional or metabolome reprogramming
 - Is not associated to SA-related responses

Current work to clone QTL PbBn-CO2

Summary

Similar results were obtained in Arabidopsis:

- ✓ Modulation of the effect of clubroot resistance QTL by flooding (water availability during the secondary phase of the *P. brassica*e life-cycle) (Gravot et al, 2016)
- ✓ Modulation of the effect of clubroot resistance epigenetic QTL by temperature (Liégard et al, under revision)

Summary

Similar results were obtained in Arabidopsis:

- ✓ Modulation of the effect of clubroot resistance QTL by flooding (water availability during the secondary phase of the *P. brassica*e life-cycle) (Gravot et al, 2016)
- ✓ Modulation of the effect of clubroot resistance epigenetic QTL by temperature (Liégard et al, under revision)

Importance of linking physiological and genetic analysis for the study of abiotic-biotic stress interactions and predict the modulation of resistance in various environments

Thanks

Antoine Gravot

Mélanie Jubault

Stéphanie Daval Kevin Gazengel Solenn Guichard Christine Lariagon Fabrice Legeai Jocelyne Lemoine Nathalie Marnet

Maria Manzanares-Dauleux

Benjamin Liégard (PhD student) <u>Yoann Aigu (PhD student)</u> Séverine Lemarié (former PhD student)

Collaborations

Steve Strelkov (Univ. Alberta) Philippe Huguenay (INRA Colmar)

Financial support:

