Integrated Management of Clubroot of Crucifers

Research Team: S.E. Strelkov, S.F. Hwang, R.J. Howard, H. Rahman & M. Hartman
Project Funders

- Agriculture and Food Council of Alberta (50%)
- Alberta Canola Producers Commission (25%)
- Alberta Crop Industry Development Fund (25%)

-Current Project End-Date: Sept. 30, 2010
Main Objectives

(1) Develop and assess new and existing clubroot management strategies
(2) Identify and characterize sources of resistance
(3) Evaluate diversity in pathogen populations
(4) Monitor clubroot occurrence and spread

Research providing the first information on these topics in Canada (5 years ago, we knew nothing!)
Evaluation of Clubroot Management Strategies

- Determine effects of soil amendments & chemical soil treatments on clubroot severity
- Two locations:
 - Sturgeon County
 - Leduc County
- Experiments established in 2007
Soil Amendments

- **Calcium carbonate**
 - 2.5, 5.0 & 7.5 t/ha
- **Wood ash**
 - 2.5, 5.0 & 7.5 t/ha
- **Calcium cyanamide**
 - 0.5 & 1.0 t/ha

Chemical Treatments

- **Allegro 500F**
 - Fluazinam
 - 3.5 & 5.0 L/ha
- **Ranman 400 SC**
 - Cyazofamid
 - 2.0 & 7.5 L/ha
- **Zonix**
 - Rhamnolipid biosurfactant
 - 1000 L/ha
- **Terraclor 75 WP**
 - Pentachlronitrobenzene
 - 45 & 90 kg/ha

Untreated controls included in both sets of experiments
Chemical Amendments & Soil Treatments

- Terraclor 75 WP and treatment with high levels of calcium carbonate or wood ash significantly reduced impact of clubroot.
Identification of Resistance Sources

- Greenhouse and field screening for sources of resistance
- Screening of lines and accessions
 - U of A Canola Breeding Program & industry
- Contribution to the development of clubroot resistant canola for the Canadian market
Diversity in Pathogen Populations

- Knowledge of pathogenic diversity in *P. brassicae* populations is critical to resistance breeding efforts.
- Characterizing populations and single-spore isolates on host differential sets.
- Evaluating diversity through molecular techniques
 - Development of molecular markers.
Pathotypes of *P. brassicae*

- The virulence of *P. brassicae* populations/isoaltes from Alberta (& other parts of Canada) has been evaluated on three differential sets:
 - European Clubroot Differential (ECD) set
 - Differentials of Williams (1966)
 - Differentials of Somé et al. (1996)
Numerous Pathotypes Identified

- Central Alberta:
 - Pathotype 3 (P_3) accounts for >90% of populations and >70% of single-spore isolates analyzed
 - Other pathotypes present but rare (pathotypes 2, 5, 6 & 8)
- Southern Alberta:
 - Pathotype 5 (P_5) found
 - (only two populations analyzed)

Suggests diversity & potential for evolution of new strains/pathotypes of *P. brassicae*
Development of Molecular Markers

- Development of markers to distinguish strains/pathotypes of the pathogen
- Inherent difficulties in working with an obligate parasite
- Promising results with Cleaved Amplified Polymorphic Sequence (CAPS) analysis

After digestion with Pvull 1 hr at 37°C

| BC (P₃) | Alberta (P₂) | ON (P₂) | Alberta (P₂) |
Monitoring Clubroot Occurrence and Spread

- Annual surveys for clubroot conducted by U of A in collaboration with AARD and agricultural fieldmen
- Rapid increase in number of infested fields
 - Yield losses range from trace to 100%
Occurrence in Alberta

- Clubroot confirmed in 405 fields
 - 5685 fields surveyed
 - About 7% clubroot-positive
- 16 municipalities & City of Edmonton
 - Additional cases suspected but not confirmed
Conclusions

• Promising soil treatments and amendments identified for clubroot control on canola
 – Use in conjunction with other tools?
 • Seeding date, resistance

• Identification of sources of resistance, screening for resistance
 – Important for the development of clubroot resistant canola
Conclusions

• Pathogenic diversity found in *P. brassicae* populations and single-spore isolates
 – Pathotype 3 or P₂ is predominant, but others also occur

• Clubroot now established in Alberta
 – Appears to be spreading

• *This project has served to increase knowledge of clubroot and its management, and represents a strong foundation from which to proceed*