Fungicides/biofungicides, Cultivar resistance, crop rotation for control of clubroot on canola

Peng G1, Lahlali R1, Hwang SF2, Pageau D3 Hynes RK1, Anderson K4, McDonald MR5, Gossen BD1, SM Boyetchko1, Strelkov SE6

1Saskatoon Research Centre, Agriculture and Agri-Food Canada (AAFC), Saskatoon, Saskatchewan;
2Crop Diversification Centre North, Alberta Agriculture and Rural Development, Edmonton, Alberta;
3AAFC Research Farm, Normandin, Quebec;
4Bayer CropScience, Regina, Saskatchewan;
5Department of Plant Agriculture, University of Guelph, Guelph, Ontario;
6Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
Resistance is the cornerstone in clubroot management

- Effective
- Economical
- Easy to use

Research plots

Commercial fields
Resistant cultivars
- resistant, but not immune
- none of the R genes is effective for all races
- resistance can be eroded with a change of pathogen race structure

Questions:
- How long will the resistance last?
- Is resistance alone enough?
- anything else that may help?
- Resistance stewardship
Additional control strategies

• Fungicides or biofungicides?

• Crop rotation?
Biofungicides & fungicides

- **Serenade** (*Bacillus subtilis*)
- **Prestop** (*Clonostachys rosea*)
- **Allegro** (Fluazinam)
- **Ranman** (Cyazofamid)

All applied as a liquid formulation
Selected products: soil drench was highly effective in controlled conditions

Pathogen control

Pathogen + biofungicide
Modes of action for Biofungicides

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Avg. disease index (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prestop</td>
</tr>
<tr>
<td>Formulated product</td>
<td>2 a</td>
</tr>
<tr>
<td>Product filtrate (cell free)</td>
<td>11 a</td>
</tr>
<tr>
<td>Spore/cell suspension</td>
<td>50 b</td>
</tr>
<tr>
<td>Pathogen control</td>
<td>93 c</td>
</tr>
</tbody>
</table>

Resting spore germination (%):

- Water (control)
- Serenade product
- Fluazinam

Graph showing germination over time (days).
Field application of fungicides/biofungicides

- Liquid formulation
- in-furrow
- 500 L/ha

Poor efficacy for clubroot control
Effect of soil dryness on efficacy
(under controlled conditions)

Disease severity index (%)

- Inoculated control
- Prestop
- Serenade
- Allegro
- Ranman

Duration of dryness (wks)

- 0
- 1
- 2
- 3
- 4

Disease severity index (%)
Using the biofungicide Serenade with CR canola cv. (n=2)

In controlled conditions

- **Plasmodiophora brassicaea**
- Dose: 10,000 resting spores/plant

<table>
<thead>
<tr>
<th>Canola cultivar</th>
<th>Disease severity index (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susceptible</td>
<td>50 ± 10</td>
</tr>
<tr>
<td>M. resistance</td>
<td>20 ± 5</td>
</tr>
<tr>
<td>H. resistance</td>
<td>5 ± 1</td>
</tr>
</tbody>
</table>

- Untreated
- Serenade
Granular formulation of *Bacillus subtilis*

GOAL: deliver a high population of the biopesticide to the canola rhizosphere
- maximize *Bacillus subtilis* “spore” production in the fermenter
- develop cost effective formulations

Formulation types
- Granules
- Seed coating
Fermentation of *B. subtilis* – optimal “spore” production
<table>
<thead>
<tr>
<th>Formulation</th>
<th>Ingredients</th>
<th>B. subtilis (mL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Bentonite clay, corn starch, peat</td>
<td>75</td>
</tr>
<tr>
<td>A2</td>
<td>Bentonite clay, corn starch, peat</td>
<td>100</td>
</tr>
<tr>
<td>B</td>
<td>Bentonite clay, pea starch, peat</td>
<td>100</td>
</tr>
<tr>
<td>C</td>
<td>Bentonite clay, corn starch, peat, CMC</td>
<td>100</td>
</tr>
<tr>
<td>D</td>
<td>Bentonite clay, corn starch, peat, CMC</td>
<td>100</td>
</tr>
<tr>
<td>E</td>
<td>Bentonite clay, corn starch, peat, PVP</td>
<td>100</td>
</tr>
<tr>
<td>F</td>
<td>Exlite pea fibre, peat</td>
<td>250</td>
</tr>
<tr>
<td>G</td>
<td>Bentonite clay, corn starch, peat, PVP</td>
<td>100</td>
</tr>
<tr>
<td>G2</td>
<td>Bentonite clay, corn starch, peat, PVP</td>
<td>125</td>
</tr>
<tr>
<td>H</td>
<td>Bentonite clay, corn starch, peat, CMC</td>
<td>125</td>
</tr>
<tr>
<td>I</td>
<td>Bentonite clay, exlite pea fibre, peat</td>
<td>175</td>
</tr>
<tr>
<td>I2</td>
<td>Bentonite clay, exlite pea fibre, peat</td>
<td>200</td>
</tr>
<tr>
<td>J</td>
<td>Bentonite clay, exlite pea fibre, peat, PVP</td>
<td>175</td>
</tr>
<tr>
<td>K</td>
<td>Bentonite clay, exlite pea fibre, peat, CMC</td>
<td>200</td>
</tr>
<tr>
<td>Z</td>
<td>Corn starch, peat</td>
<td>171</td>
</tr>
</tbody>
</table>
Extrusion

Spheronization

Extrudate

Granular formulations
Disintegration rate of granules

![Graph showing disintegration rate of granules](image-url)
Corn-cub-grits granular formulation

- Easy to apply with canola seeding
- Granule source abundant & inexpensive
- Effective in controlled conditions
- Field application: 50 Kg/ha
2011 field trials
I. Fungicide/biofungicide x cv. resistance

- Leduc, AB
- Edmonton, AB
- Normandin, QC
- Two granular Serenade formulations
- corn-cub grit carrier (granules) for Allegro and Ranman
- CR and CS cultivars
Leduc, AB (2011)

- cv. resistance was highly effective; with substantial clubroot reduction and yield increase

- None of fungicide or biofungicide treatments was effective
Edmonton, AB (2011)

Almost exactly the same pattern as in Leduc, AB

Edmonton, AB
Seeding date: June 2, 2011
2011 field trials

Normandin, QC

Disease severity index (%)

0 20 40 60 80 100 120

Yield (g/plot)

0 450 1000 1500 2000 2500 3000 3500

Susceptible cultivar

Resistant cultivar

45H26 S

45H29 R

Treatment

Control

Serenade granules

Allegro grits

Ranman grits

Serenade grits
II. Biofungicide seed treatment x crop rotation (Normandin, QC 2011)

Three crop rotation scenarios:
1) Canola-barley-canola (short rotation)
2) Canola-barley-barley-pea-canola (long rotation)
3) 11-year continuous barley (extremely long break)

Biofungicide seed treatment
Low, medium, high, and very high rates (B. subtilis)

Bioassay & qPCR before and during trials
Pathogen inoculum pressure in varying rotation
Table 4. Estimate of *Plasmodiophora brassicae* inoculum pressure (soil-sample bioassay) and early pathogen development in canola roots using qPCR in plots of varying crop-rotation history (2011).

<table>
<thead>
<tr>
<th>Crop rotation (Year of break)</th>
<th>Bioassay (%DSI)</th>
<th>qPCR (ng/g fresh root)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Field trial 1</td>
<td>Field trial 2</td>
</tr>
<tr>
<td>1</td>
<td>74.8 a</td>
<td>11.6 a</td>
</tr>
<tr>
<td>3</td>
<td>47.0 b</td>
<td>7.3 b</td>
</tr>
<tr>
<td>11</td>
<td>28.3 c</td>
<td>8.7 b</td>
</tr>
</tbody>
</table>

A Soil samples were taken prior to the trials and root samples were taken from nontreated control plots 4 weeks after seeding.
Results

Clubroot severity index

1-year break
Canola – barley - Canola

3-year break
Canola-barley-barley-pea-canola

11-year break
11-years of continuous barley
Crop condition assessment

Break from last canola crop (years)

Scale 0

Scale 4
Canola seed yield

- Seed treatment was of no benefit
- A longer break from a canola crop gave much higher yields in both trials
- Even a 3-year break doubled the year relative to 1-year break due to reduced impact to the crop by clubroot
Summary

- Biofungicides/fungicides, in liquid or granule formulations, showed no efficacy against clubroot on canola under field conditions.
- Resistance cultivars demonstrated high value in clubroot management, especially under high disease pressure conditions.
- Long crop rotation (>4 yrs) alleviated clubroot impact on canola, reducing yield losses.
Acknowledgement

• L. McGregor, D. Hupka, J. Geissler for tech. assistance
• ISK, Pioneer, AgraQuest, Bayer CropScience for providing materials and expertise
• AAFC CRMI, ADF, SaskCanola, ACIDF, CCC for providing funding