Canola Meal Research Meeting

Understanding the Nutritional Value of Canola Meal and How It Can Be Enhanced for Dairy Cattle Feeding

Tim Mutsvangwa
Department of Animal and Poultry Science
University of Saskatchewan

Outline of Presentation

- Nutritional characteristics of canola meal
- Dairy production trials with canola meal as major protein source
 - Canola meal
 - Rumen-protected canola
- Mechanisms for observed responses?
- Getting the best out of canola meal
 - Manipulating N metabolism

Chemical Composition of Canola Meal

	Canola	Canola	Soybean
	Seed ¹	Meal ¹	Meal
	Dry	y Matter Ba	sis, %
Crude Protein	22.2	38.9	49.9
Oil	43.0	3.9	1.5
Crude Fiber	8.0	13.3	7.0
Acid Detergent Fiber	10.9	19.1	10.0
Neutral Detergent Fiber	13.5	23.6	15.0
Calcium	0.40	0.70	0.34
Phosphorus	0.68	1.20	0.70
NE _L (mcal/kg)	3.52	1.76	1.94

¹Hickling, D. 2001. Canola Meal Feed Industry Guide

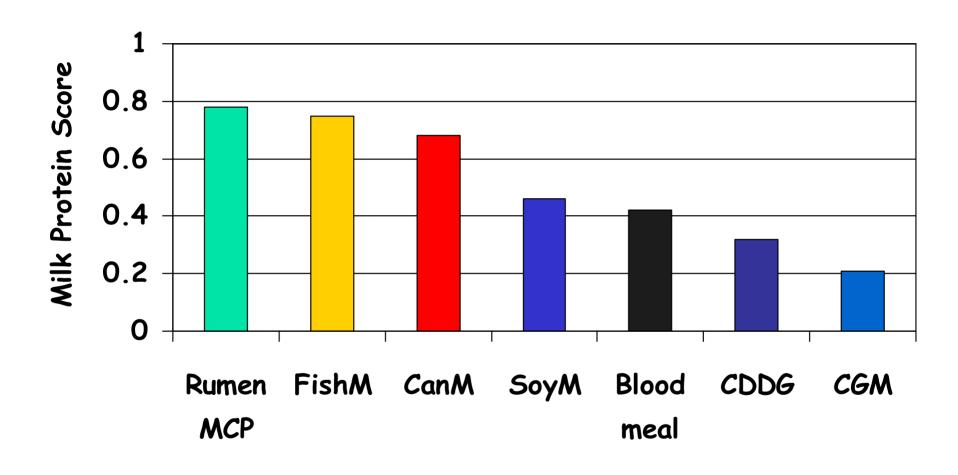
Summary of Canola Meal Dairy Trials

	Milk Yield, kg/d		
	Control ¹	Canola Meal	
18 Production Trials	25.1	26.1	
Highest Production Trial	39.8	41.4	
Lowest Production Trial	17.2	16.9	

 ¹Soybean meal or cottonseed meal

Production responses: 0.1 to 4.3 kg/d

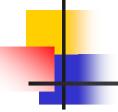
Canola Meal as a Protein Ingredient


Why is canola meal such an excellent protein source for dairy cows?

Ingredient and MCP AA Composition Relative to Milk Protein

		Amino A	cid as % of	Milk Protein
	Milk, %EAA	MCP	Canola meal	Soybean meal
Arginine	7.2	139	197	225
Histidine	5.5	73	138	111
Isoleucine	11.4	107	83	89
Leucine	19.5	81	82	88
Lysine	16.0	119	84	87
Methionine	5.5	84	95	58
Phenylalanine	10.0	104	103	116
Threonine	8.9	121	113	98
Tryptophan	3.0	90	115	93
Valine	12.0	85	88	78

NRC, 2001; Hickling, D. 2001. Canola Meal Feed Industry Guide


Metabolic Trials with Canola Meal

- A. F. Brito and G. A. Broderick. 2007. Effects of different protein supplements on milk production and nutrient utilization in lactating dairy cows. *Journal of Dairy Science 90:1816-1827*
- A. F. Brito, G. A. Broderick, and S. M. Reynal. 2007. Effects of different protein supplements on omasal nutrient flow and microbial protein synthesis in lactating dairy cows. *Journal of Dairy Science 90:1828-1841*

Metabolic Trials with Canola Meal

- 3 protein ingredients
 - Canola meal
 - Soybean meal
 - Cottonseed meal
- 12-16% on DM basis
 - Isonitrogenous, isocaloric
- Rumen-cannulated cows
 - Rumen measurements
 - Omasal nutrient flow
 - Omasal sampling technique

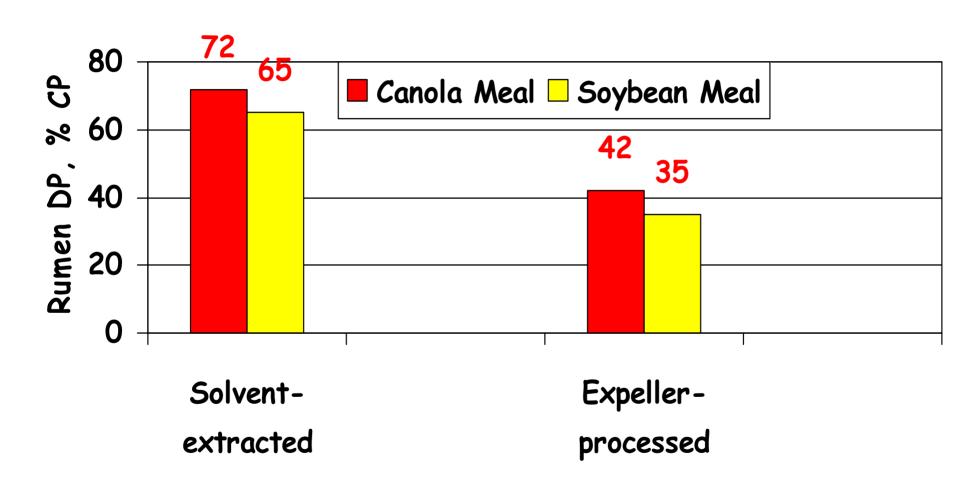
Protein Supplements and Cow Performance

	Protein Supplement				
		Cottonseed			
	Canola meal	Meal	Soybean Meal		
DMI, kg/d	26.0	25.2	24.7		
Milk yield, kg/d	41.1	40.5	40.0		
Fat, %	3.14	2.94	3.09		
Fat, kg/d	1.29a	1.18 ^b	1.22ab		
Protein, %	3.12a	2.97 ^b	3.15 ^a		
Protein, kg/d	1.27 ^a	1.18 ^b	1.23ab		

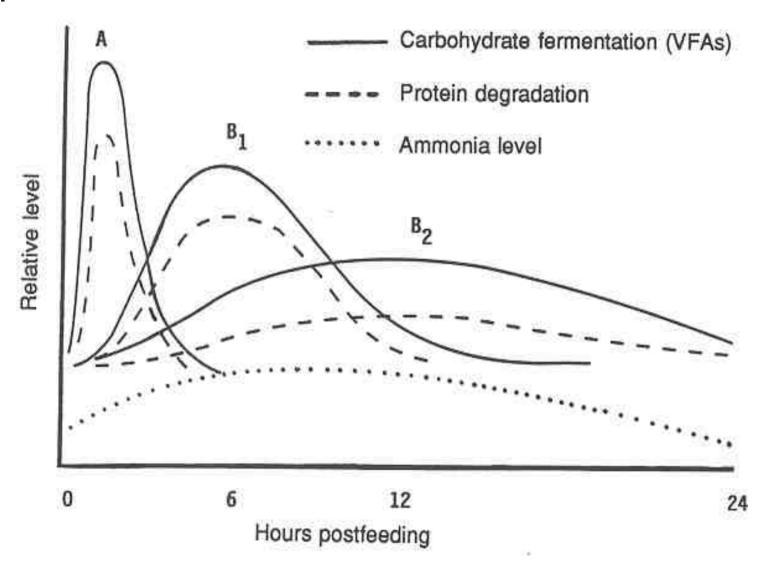
Brito and Broderick. 2007. J. Dairy Sci. 90:1816

Protein Supplements and Omasal EAA Flow

	Canola meal	Cottonseed Meal	Soybean Meal
Omasal flow, g/d			
Lysine	201	196	194
Methionine	73.9	70.3	67.9
Histidine	67.5ab	68.4°	62.1 ^b
Total EAA	1496	1474	1418

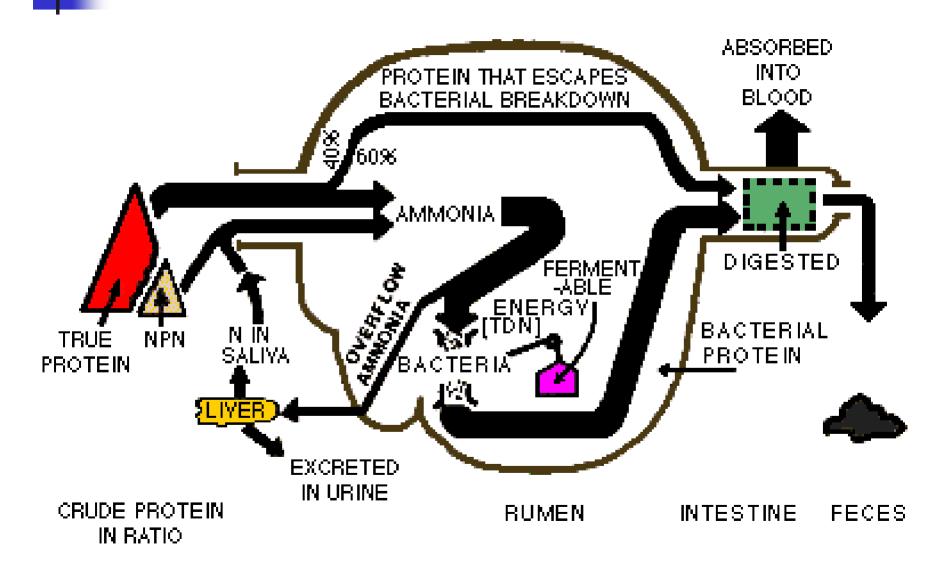


Protein Supplements and N Metabolism


		Cottonseed	
	Canola meal	Meal	Soybean Meal
N intake, g/d	695	671	653
Omasal flow, g/d			
Total N	628	649	598
RUP	1150 ^{ab}	1348 ^a	1061 ^b
Microbial N	219	300	271
Ammonia-N	12.1ª	9.40 ^b	10.4 ^b

- Is energy availability limiting MCP production such that N is wasted?
 - Uncoupled fermentation?

Rumen Degradability of Protein Ingredients



Carbohydrate and Protein Utilization Rates in the Rumen

Van Soest, P. J. 1996.

Overview of Nitrogen Metabolism in Ruminants

Source: www.agr.gc.gc/lethbridge

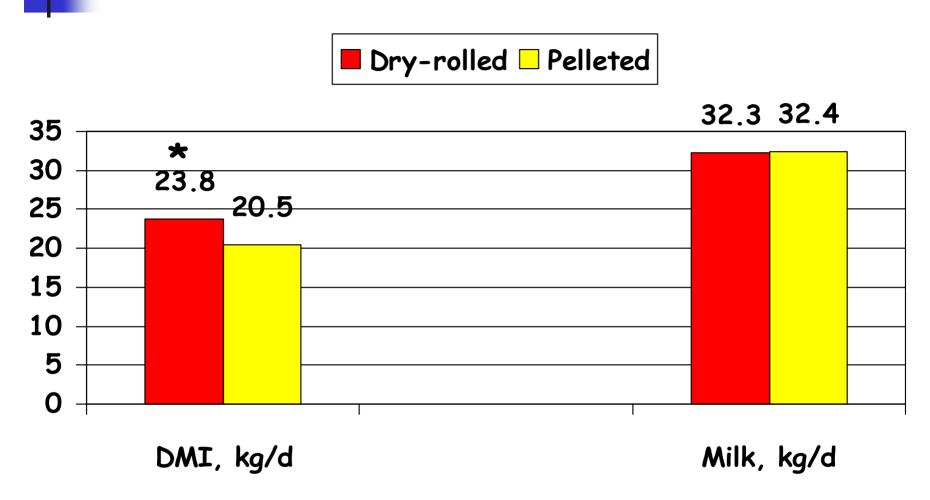
Enhancing Utilization of Canola Meal

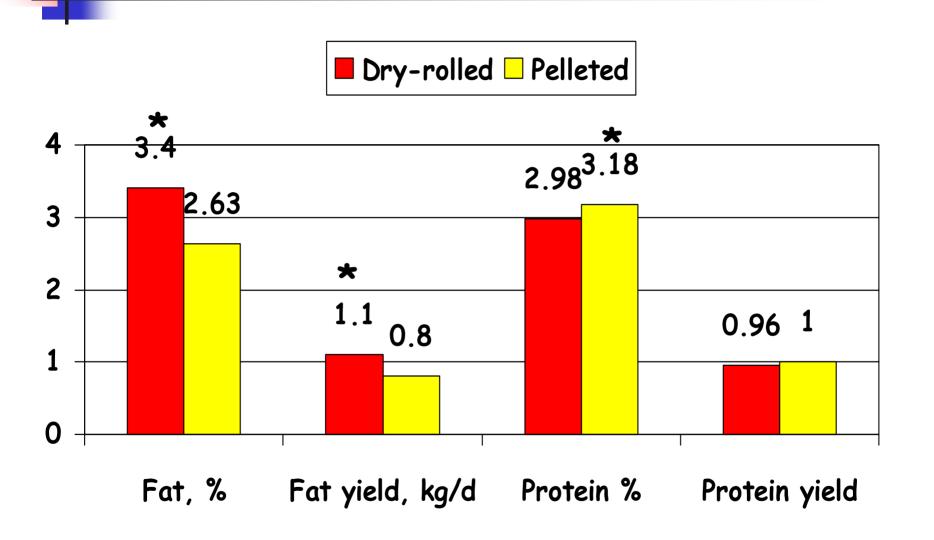
How do we enhance efficiency of N utilization in diets containing canola meal as the major protein ingredient?

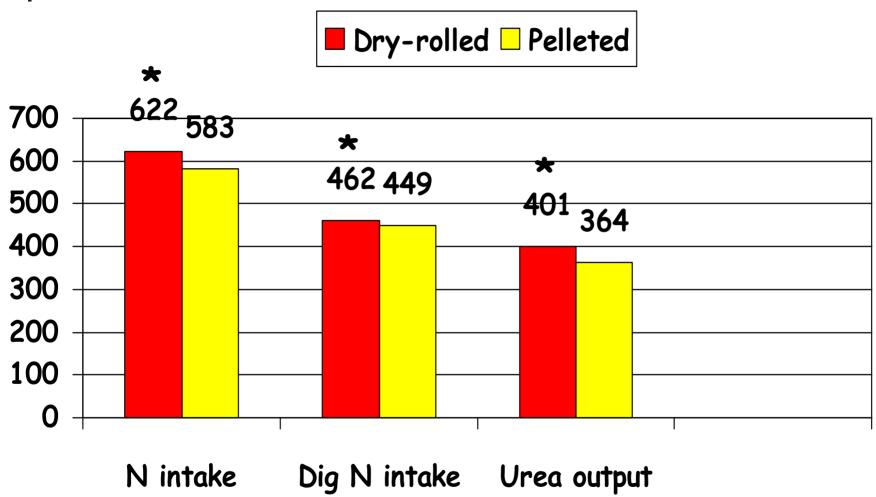
- 2 approaches
 - Recapture N as microbial crude protein

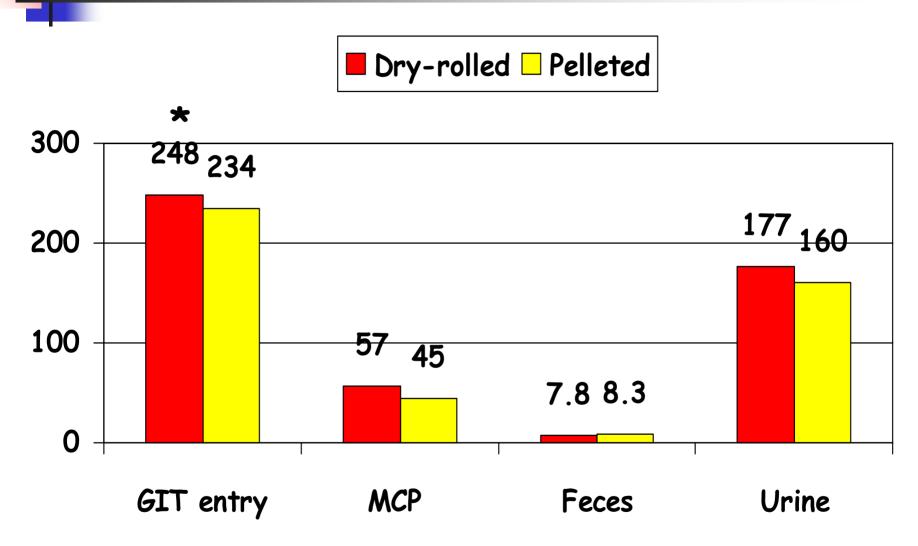
Metabolic Trials to Enhance N Utilization

 G. Gozho, M. Hobin, and T. Mutsvangwa. 2007. Effects of barley grain processing on N metabolism and N recycling in lactating dairy cows. *Journal of Dairy* Science (accepted)


Metabolic Trials with Canola Meal


- 2 diets
- Canola meal as major protein source
 - Isonitrogenous, isocaloric
- Dry-rolled barley or pelleted barley
 - Alter available energy in rumen to stimulated MCP
- Rumen- and duodenallycannulated cows
 - Rumen measurements
 - Duodenal nutrient flow





	Dry-rolled barley	Pelleted barley
Rumen pH	6.13ª	5.73 ^b
Ammonia, mg/dL	19.9a	13.9 ^b
Acetate, mM	90.0a	74.0 ^b
Propionate, mM	31.1 ^a	35.7 ^b
A:P ratio	3.0^a	2.4 ^b
Butyrate, mM	19.0°	15.4 ^b
Total VFA, mM	143.3	128.5


Urea output: 081-0.84 of digestible N intake

• GIT urea entry: 61-65% of endogenous urea production

Enhancing Utilization of Canola Meal

- 2 approaches
 - Recapture N as microbial crude protein
 - Rumen protection
 - Physical methods
 - Chemical methods

Production Responses to High RUP Canola Meal

	% CM replaced with heated CM				
Item	0	33	67	100	
DMI, lb/d	41	42	44	45	
Milk yield, lb/d	64	66	65	70	

Responses to High RUP Canola Meal

	% CM replaced with heated CM					
Daily duodenal flow	0	33	67	100		
Feed AA, kg	0.77	0.81	1.02	1.16		
Microbial AA, kg	1.25	1.53	1.53	1.54		
Total AA, kg	2.32	2.72	2.92	3.07		
Lysine, g	169	196	215	234		
Methionine, g	71	86	99	106		

• Uncoupled fermentation?

Rode et al. 1999. J. Dairy Sci. (Suppl. 1):67

Is rumen ammonia level limiting MCP production?

Metabolic Trials with Heated Canola Meal

- 2 diets
- Canola meal or heated canola meal as major protein sources
 - Isonitrogenous, isocaloric
- Ruminally- and duodenallycannulated beef heifers
 - Rumen measurements
 - Duodenal nutrient flow

Ingredients and Chemical Composition of Diets

	10%	6 CP	139	6 CP
Item	64.5% RDP	71.0% RDP	64.5% RDP	71.0% RDP
Ingredients, % as fed				
Barley Grain	55.0	55.0	48.0	48.0
Oat Hulls	35.0	35.0	32.0	32.0
Canola Meal	5.0	0.0	8.0	15.0
Heated Canola Meal	0.0	5.0	7.0	0.0
Premix	5.0	5.0	5.0	5.0
Chemical Composition				
DM, %	89.9	88.7	89.8	89.6
CP, % of DM	10.8	10.8	13.9	14.0

K. Baker et al. (unpublished)

N balance in Beef Heifers

	10%	6 CP	13%	6 CP			<i>P</i> value	
Item (g/d)	64.5% RDP	71.0% RDP	64.5% RDP	71.0% RDP	SEM	СР	RDP	CP× RDP
DMI, kg/d	8.0	7.5	7.6	7.4	0.5	0.61	0.75	0.51
N balance, g/d								
N intake	138.5	130.1	171.7	165.3	10.8	0.01	0.51	0.93
Fecal N	28.7	26.9	30.3	28.6	2.4	0.50	0.47	0.98
Urine N	50.7	49.0	69.5	72.9	7.7	0.02	0.92	0.75
N retention	59.1	54.2	71.9	63.8	6.0	0.09	0.30	0.79

K. Baker et al. (unpublished)

Urea-N Kinetics in Beef Heifers, g/d

	10%	СР	139	6 CP			<i>P</i> value)
Item	64.5% RDP	71.0% RDP	64.5% RDP	71.0% RDP	SEM	СР	RDP	CP× RDP
Urea-N kinetics								
Production	135.0	131.7	165.7	166.9	10.8	0.03	0.92	0.84
Gut entry	98.4	93.3	121.1	105.6	11.3	0.81	0.40	0.67
Reabsorbed	70.3	69.8	84.0	86.2	6.5	0.07	0.90	0.84
Feces	2.7	2.6	2.0	2.1	0.2	0.06	0.95	0.68
Urine	36.5	43.1	44.6	61.3	5.1	0.04	0.06	0.35
Anabolism (MCP)	25.4	20.9	35.1	17.2	7.7	0.72	0.21	0.43
MCP yield	50.7	55.3	71.0	70.0	15.1	0.27	0.91	0.86

K. Baker et al. (unpublished)

Conclusions

- Canola meal is a premium ingredient for dairy cow rations
 - Superior amino acid profile suited for milk production
- Production responses variable
 - 0.1 to 4.3 kg/d when compared with soybean meal or cottonseed meal
- Feeding value can be enhanced by rumen-protection of canola protein
 - Heat treatment effective
- Need better understanding of protein utilization in rumen and post-ruminally
 - For cows producing >40 kg/d of milk

Financial Support

- Canola Council of Canada
- Saskatchewan Canola Development Commission
- Saskatchewan Agricultural Development Fund
- NSERC
- University of Saskatchewan