

Breeding Triple Low Canola

J. Relf-Eckstein and G. Rakow

Agriculture and Agri-Food Canada, Research Centre, Saskatoon, SK

"Triple Low" Canadian Canola

1. Low erucic acid oil

"less than 2% erucic acid"

2. Low glucosinolate meal

"the solid component of the seed must contain less than

- 30 micromoles of any one or any mixture of
- 3-butenyl glucosinolate, 4-pentenyl glucosinolate,
- 2-hydroxy-3 butenyl glucosinolate, and 2-hydroxy-
- 4-pentenyl glucosinolate per gram of air-dry, oil-free solid"

3. Ultra low fibre meal

"the solid component of the seed must contain less than 2% acid detergent lignin content"

Brassica napus, Brassica juncea and Brassica rapa species

Rapeseed to canola

- Late 1940's to early 1970's "single low"
 - oil portion of seed (40 to 44%)
 - industrial use to edible oil low erucic acid oil varieties
 - meal portion of seed (60%, 36 to 37% protein)
 - problems palatability and anti-nutritional factors
 - low glucosinolate 'Brownowski' identified
- Mid 1970's to 1980's "double low"
 - low erucic acid oil, low glucosinolate meal
 - varieties B. rapa: 'Tower' 1974 & B. napus 'Candle' 1977, 'Westar', 1982
 - "canola < 2 % erucic acid oil, < 30 μmoles/g meal", GRAS status,1985
- Mid 1980's to late 1990's
 - herbicide tolerant (HT) canola
 - hybrid systems in Brassica napus canola
- Trend in western Canadian canola production acreage
 - 1994: 50% B. napus 50% B. rapa
 - 2000: 95% B. napus 5% B. rapa
 - 2006: 98% B. napus HT canola (>50% hybrids)

Canola quality mustard: diversification and expansion of *Brassica* production

Beginning 1950's

- potential of Brassica juncea investigated by plant breeders, AAFC
 Saskatoon and animal scientists, University of Saskatchewan
 - yield advantage + resistance to shattering, disease resistance
 - genetic diversity and expansion of production to brown soil zones, hot, dry

Early 1980's to 1995

- development of low erucic acid B. juncea Australia, 1981
- development of low glucosinolate B. juncea Saskatoon, 1985
- improvement of canola quality fatty acid profile B. juncea AAFC-SRC & Saskatchewan Wheat Pool (SWP),1995

2000 to 2005

- regulatory approvals Canada, U.S.A. GRAS status SWP, 2001/2003
- development and commercialization under contract registration by SWP of B. juncea canola
 - (Arid and Amulet, 2002; Estlin, 2005)

Brassica juncea canola commercial cultivars

	Yield ¹		Oil	Protein	T-SAT ²	T-GSL ³	
Cultivars	kg/ha	%	(%)	(%)	(%)	(µmol/g)	
Estlin	2650	105.5	45.1	48.6	6.7	12.4	
Arid	2510	100.1	44.2	49.6	7.0	13.4	
Q2 ⁴	2580	102.7	44.5	47.5	6.9	11.4	
Sites	18	18	18	18	18	18	

B. juncea canola cultivar 'Estlin' rated R for resistance to black leg disease;

0.1 µmoles per gram seed allyl isothiocyanate glucosinolate, 64% C18:1.

Data courtesy: Dr. Derek Potts, Viterra

^{1 - 2003-2004} Combined Data

^{2 –} Total saturated fats (%)

^{3 –} Total glucosinolate content of seed (µmoles per gram seed)

^{4 –} Black seeded B. napus check

Low fibre, yellow-seeded Brassica napus canola

Early 1970's

yellow-seeded forms of Brassica investigated by plant breeders,
 AAFC Saskatoon and animal scientists, University of Saskatchewan

1970's to 2001

- non pigmented seed coat sources in naturally occurring Brassica sp.
 - B. abloglabra, B. juncea, B. carinata, B. rapa
- introgressed into pigmented form of B. napus (1970's to 1998)
- conventional breeding methods; field production; seed quality, disease resistance and agronomic selection strategies (1980's to 2001)

2003 to current

- selection of *B. napus* line YN01-429 (2003)
 - true breeding, yellow-seeded (low fibre), low glucosinolate, low total saturated fat, high oil content, competitive in seed yield with open-pollinated check cultivars, moderate resistance to black leg disease
- establishing genetically diverse yellow-seeded canola gene pools for commercialization into hybrid varieties

Low fibre, yellow-seeded Brassica napus canola

	Yield ¹		Oil Pro	Protein	tein SW ²	T-GSL ³	Fibre ⁴ (% meal)		
Lines	kg/ha	%	(%)	(%) (%)	(g/1000)	(µmol/g)	ADL	ADF	NDF
YN01-429	2030	109	49.1	46.9	3.30	12.9	1.3	8.2	14.9
46A65/Q2 ⁵	1890	100	45.8	49.0	2.77	17.7	5.4	13.6	19.1
Station yrs	6	6	6	5	4	4	4	4	4

- 1 Yield at AAFC Saskatoon, Scott and Melfort, 2002-2004; 6 station years
- 2 1000 seed weight (grams per 1000 seeds)
- 3 Total glucosinolate content of seed (µmoles per gram seed) by g.c.
- 4 Insoluble fibre by Ankom 200 Fibre Analyzer: ADL is acid detergent lignin; ADF is acid detergent fibre (cellulose + lignin); NDF is neutral detergent fibre (hemicellulose + cellulose + lignin + pectin)
- 5 Black seeded checks

Brassica juncea canola meal

Meal	Crude Protein (%)	ADF ¹ (%)	NDF ¹ (%)	Crude Fibre (%)	Crude Fat (%)	
B. juncea	42.4	11.4	18.8	7.7	1.4	
B. napus (black)	39.0	17.0	27.8	11.4	2.5	
1 – ADF is acid detergent fibre; NDF is neutral detergent fibre						

Data courtesy: Dr. Derek Potts, Viterra & Dave Hickling, CCC

R.T. Zijlstra, D. R. Hickling and J. F. Patience, 2003

Value of yellow-seeded Brassica

1974 (G.D. Stringam, D.I. McGregor & S.H. Pawlowski)

• yellow-seeded *B. rapa* had thinner hulls, lower fibre higher oil, than brown-seeded forms *B. rapa*

1982 (J.M. Bell & A.Shires)

- hulls from yellow-seeded *B. rapa* 'R500' less NDF and lignin than brown-seeded *B. napus* 'Tower'
- energy components of hulls more digestible in yellow-seeded 'R500'

1999 (B.A. Slominski, J. Simbaya, L.D. Campbell, G. Rakow & W. Guenter)

- 2-week growth trial, 4-day old broiler chickens
- significantly lower Feed to Gain ratio with yellow-seeded B. napus canola meal than black-seeded B. napus
- ~ 6 % (significant) increase True Metabolizable Energy with yellow-seeded *B. napus* canola meal (as previously reported, Slominski, 1977)

2003 (R.T. Zijlstra, D.R. Hickling & J.F. Patience)

- 28-day growth trial, pigs, fed *B. juncea* & *B. napus* canola meal (15%)
- 2.5% increase Feed Efficiency (+5.8% days 22-28) B. juncea
- 42 g/d (4.7%) increase Av. Daily Gain (+16.8% days 22-28) B. juncea

The future of low fibre, yellow-seeded Brassica

Increasing the value chain of Canadian canola

- Superior value canola meal with increased energy content (6% +)
 - ultra low fibre (< 2% ADL, < 10% ADF)
 - ultra low glucosinolate meal (< 2 μ moles/g)
 - reduction in anti-nutritional factors (phytate, sinapine)
- Increased total oil content (50 52 %)
 - superior technological and nutritional quality
 - high stability oils (high oleic and low linolenic)
 - low total saturated fat (< 5%)
 - opportunities for biofuel
- Multiple species of Brassica canola
 - genetic diversity for sustainable gene pool development & production
 - expanded production area & choice of species to minimize risk
- Increased value at farm gate, feed industry, crushers, end users
 - high yielding, disease resistant canola
 - increased seed size and seedling vigour
 - preferred crop production systems of HT hybrids

Global perspective of yellow-seeded Brassica

- China
- European Union
- Siberia
- Australia

We have a choice to mobilize our Canadian canola industry (as defined by animal and human nutrition researchers, Canadian Grain Commission, chemists, Council, crushers, end-use customers, federal regulators, plant breeders, producers, provincial gov't, private companies, universities, etc.)

"Made in Canada"

- it is time to recognize and acknowledge our achievements
- it is time to be aggressive and position
 Canada in a competitive, global oilseeds
 market with the superior quality and potential
 of "triple low" rapeseed/canola
- what do we have to lose?

Acknowdgements for the vision of low fibre, yellow-seeded *Brassica* for Canada

