Efforts to increase canola meal energy content for monogastrics: Enzyme supplementation

Bogdan A. Slominski

Department of Animal Science, University of Manitoba, Winnipeg, Canada R3T 2N2

Chemical composition of canola meal (%)

- Protein
- Sugars
- Starch
- Fat
- Oligosaccharides
- Dietary Fiber
- Phytate
- Ash

Target Substrates for Enzyme Application

- Oligosaccharides
- Phytate
- Dietary Fiber Components

Enzymatic reactions involved in oligosaccharide hydrolysis

Alpha-galactosidase research Conclusions

- Alpha-galactosidase is inactivated in the gut!!
 - Acidic environment
 - Dietary calcium

The oligosaccharides do not pose a nutritional concern.

Chemical composition of canola meal (%)

- Protein
- Sugars
- Starch
- Fat
- Oligosaccharides
- Dietary Fiber
- Phytate
- Ash

Composition of dietary fibre (% DM, fat free basis)

B. napus canola

Seed type	NSP	Glycoprotein	Lignin & polyphenols	Total fiber
Black	16.7 ^b	4.8	9.8 ^a	32.1 ^a
Yellow	17.5 ^a	4.0	4.7 ^b	26.4 ^b

NSP of canola meal

- May encapsulate nutrients
 - -more so in canola seed than meal.
- Do not pose the viscosity problem
- Poorly utilized
- Associated with enzyme resistant proteins

The Evolution from Conventional to New Generation Enzyme Supplements

NSP Depolymerization

Canola Seed

- Research using a new generation enzyme supplement has demonstrated:
 - Improvement in TME_n
 ↑ 32% (1154 kcal/kg) seed)

- Improvement in growth performance of broiler chickens fed diets containing 15% of canola seed:
 - FCR

1 4%

• AME_n

↑ 7% (200 kcal/kg diet)

- Improvement in FCR of broilers fed diets containing 15% of black and yellow *B. napus* seeds:
 - Black

1 4%

Yellow

↑ 3%

Canola Seed-rich Wheat Screenings

- Research using a new generation enzyme supplement has demonstrated:
 - Improvement in growth performance of broiler chickens fed diets containing CM and canola seed-rich wheat screenings:

BWG
 ↑ 3.5%
 ↑ 6.0%
 ↑ AME_n
 ↑ 8.5% (241 kcal/kg diet)

 Improvement in growth performance of weaned pigs fed diets containing CM and canola seed-rich wheat screenings:

Average daily gain † 4%
Gain to feed ration † 15%
Ileal energy digestibility † 14%

Microstructure of Canola Seed

Carbohydrase enzymes improve energy utilization from full fat canola seed by elimination of the nutrient encapsulating effect of cell walls

200 µm

Terminal ileum digesta

Wheat/CM diet fed to broiler chickens

Protein bodies within the aleurone layer of wheat

Canola meal fragments

Canola Meal

- Research using a new generation enzyme supplement has demonstrated:
 - Some improvement in growth performance of broiler chickens fed diets containing 30% canola meal:
 - Lack of improvement in growth performance of broilers fed corn/canola meal (30%) diets.

Prepress Solvent Extraction Process

Enzyme Pretreated Canola Meal

Incubation of CM with enzyme at 20% moisture content

Enzyme	NSP	NSP-glucose	Oligosaccharides	Phytate
-	172.9ª	66.4ª	21.0 ^a	28.8ª
+	137.3 ^b	35.8 ^b	0.0 ^b	1.1 ^b

 Improvement in growth performance of broiler chickens fed enzyme pretreated meal (30%):

BWG

5.6%

• FCR

1 2.6%

• AME_n

↑ 5.2% (151 kcal/kg diet)

NSP balance In vitro enzyme incubation study

Carbohydrase enzymes may produce NSP hydrolysis products which are similar to those effective in minimizing proliferation of pathogenic bacteria

- 1,4-D-Glucose
- 1,3-D-Glucose
- D-Xylose
- L-Arabinose
- **D-Galactose**
- **D-Mannose**
- L-Rhamnose
- D-Galacturonic acid

Bacterial growth on EtOH-extracted CM

Represents difference in growth without and with enzyme addition

Bacteria	Growth (log ₁₀ CFU/ml/6h)
Escherichia coli	0.16
Salmonella Typhimurium	0.00
Clostridium perfringens	0.00
Campylobacter jejuni	0.31
Lactobacillus brevis	0.58
Bifidobacterium pullorum	0.53

Thank you!

Questions?

Phytate and non-phytate P contents of feed ingredients

Future Research

- Further characterization of the carbohydrase enzyme hydrolysis products.
- Growth of *Cl. perfringens* strains on ileal digesta samples from broiler chickens fed different diets without and with enzyme supplementation: In vitro study (on going).
- The effect of enzyme supplementation on growth performance, Necrotic enteritis development, lesion score, and mortality in broiler chickens challenged with *Clostridium perfringens* (Maple Leaf Foods Agresearch Trial 2; "hot" strain to be considered).

Potential prebiotic effect of NSP hydrolysis products

 In the process of depolymerizing various polysaccharides in the diet, exogenous enzymes may produce short xylo-, manno-, gluco- or galacto-oligomers which may facilitate proliferation of bacteria associated with a probiotic effect (lactobaccili) and decrease the abundance of pathogens such as Clostridium, Salmonella and E. coli.

A Model of Cell Wall Architecture

Broiler Chicken Experiment Effect of α-Galactosidase Supplementation

Diet	Oligosaccharide digestibility (%)	BWG (g/14 days)	FCR
Control (no enzyme)	27.2 ^a	447.4	1.52
α-Galactosidase (0.01%)	32.1 ^a	454.1	1.52
α-Galactosidase (0.05%)	57.4 ^b	439.7	1.53

