Growing Season Soil Moisture Monitoring 2019: A Case Study from Portage la Prairie, MB

1Agriculture and Agri-Food Canada, Portage la Prairie, MB 2Manitoba Agriculture and Resource Development, Winnipeg, MB

Background

Soil moisture is one of the main drivers of crop yield potential and variability within landscapes (Aspinall, 1997). Differences in available soil moisture vary spatially, with depth, and temporally, and these differences are dramatically influenced by weather and crop management practices.

The advent of in-field weather stations providing data in real-time allows for timely crop management decisions, but proper interpretation and validation of soil moisture values is crucial for end-users to address the following objectives:

1. Identify the influence of crop type and growth stage on soil moisture
2. Determine of critical values of soil moisture
3. Quantify the impact of tillage and compaction on water movement through the soil profile.

Methods

Site description of AAFC-Portage la Prairie:

- **Soil:** Neuhorster silty clay loam (imperfectly drained, Gleyed Black Chernozem, with an Agriculture Capability Class 2W and an average particle size analysis of 4% sand, 64% silt and 32% clay (Michalyna and Smith, 1972). Soil Organic Matter approx. 6.0% (2019 soil test, AgVise Laboratories).
- **Book values for wilting point (WP) and field capacity (FC) were obtained through soil survey reports where data was available for comparable soil series.**
- **Values for each horizon depth were averaged to give a single approximate value for a 120 cm (4 ft) profile depth.**
- **2019 weather data (% of normal rainfall by month):**
 - Growing Season 410 mm (121%); May 56%; June 67%; July 169%; Aug 36%; Sept 31%.
- **Two types of soil moisture sensors installed at two different locations at AAFC-Portage:**
 a) Weather station; CSS655 (Campbell Sci. Inc.) at depths of 5, 10, 20, 50 and 100 cm, under grass.
 b) Tillage trial; ECH_0 EC-5 (Decagon Devices Inc.) at depths of 12, 20 and 50 cm, under canola (seeded May 31) under four tillage treatments (chisel plow (CT), subsoiler (DT), vertical tillage (VT) and raised bed (RB)).
- **Site-specific calibration improves the accuracy of soil moisture sensors (Ojo et al., 2015).** However, all measurements are presented using factory default settings. **Note:** Accuracy is within ±5%.

Observation 1 – ID effect of crop water use

Observation 2 – ID critical soil moisture values

![Figure 2. Soil moisture by depth and rainfall at AAFC-Portage weather station.](image)

Observation 3 – Quantify the impact of tillage

![Figure 3. Changes in soil moisture by depth after two significant rainfalls: a) July 14, at maximum crop growth (70 mm over 15 hours); b) September 20, after crop growth has ceased (58 mm over 48 hours).](image)

Discussion

- **Critical moisture values from various sources are reported in Table 1. Compare these book values with % Saturation = % Water-Filled Pore Space (WFPS).**

Table 1. Comparison of critical soil moisture values for Neuhorster series.

<table>
<thead>
<tr>
<th>Moisture Parameter</th>
<th>Book Value</th>
<th>Field Sensors</th>
<th>Estimates from Figures 2-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volumetric moisture (m3/m3)</td>
<td>(m3/m3)</td>
<td>(mm (inches))</td>
<td>per 1.2 m (4 ft) of profile</td>
</tr>
<tr>
<td>Saturation</td>
<td>-</td>
<td>-</td>
<td>0.48</td>
</tr>
<tr>
<td>Field Capacity (FC)</td>
<td>0.33</td>
<td>0.39</td>
<td>0.40</td>
</tr>
<tr>
<td>Wilting Point (WP)</td>
<td>0.10</td>
<td>0.27</td>
<td>0.15</td>
</tr>
<tr>
<td>Available Water (AW)</td>
<td>0.23</td>
<td>0.12</td>
<td>0.25</td>
</tr>
<tr>
<td>Plastic Limit (PL)</td>
<td>0.42</td>
<td>0.96</td>
<td>0.40</td>
</tr>
</tbody>
</table>

- **Results appear to be reasonable but should be verified and refined with in-field bulk density values and account for variability among soil layers within the profile.**
- **The effect of crop water use on soil moisture is expressed in the delay of the July rainfall event vs Sept event (Fig. 2) as well as the faster increase in subsoil moisture at the 50 and 100 cm depths in September vs July (Fig. 3a and 3b).**
- **The influence of deep tillage treatments (raised beds and subsoiling) decreased soil moisture and resulted in a negative impact on crop yield when growing season moisture was limited. These treatments tended to reduce soil compaction slightly and could improve crop yields during conditions of excess moisture (Cavers, 2018).**

Summary

Enhanced knowledge of soil moisture parameters will improve agriculture’s ability to:

- **More accurately determine crop yield potential throughout the growing season.**
- **Apply crop inputs more efficiently based on field accessibility and other moisture-related factors.**
- **Identify the early onset of soil health risks, such as soil compaction and salinity, due to prolonged excess moisture conditions, so that appropriate and timely management decisions can be made.**

Acknowledgements

- The authors are grateful for the funding contributions of the Manitoba Canola Growers Association’s Canola Agronomic Research Program (CARP) to the tillage trial component of this presentation.
- The authors recognize the contribution of Mr. Steve Sager, Agriculture and Agri-Food Canada, for the establishment of several soil and groundwater monitoring equipment at AAFC-Portage.

References

Figure 1. Depth to water table at observation well (BH4) and 2019 growing season precipitation.

- Water table responds to precipitation more dramatically when crop uptake ceases (Fig. 1).
- Crop growth began to use soil moisture by mid-late June, as indicated at the 5 and 10 cm depths, early July at the 20 cm depth and mid-July at the 50 cm depth (Fig. 2).
- Crop growth rate can be up to 8 mm/day, depending on the crop, growth stage and growing conditions (McKenzie and Woods); yield potential of various crops is based on available soil water (Manitoba Agriculture).

- CT and VT are shallow types of tillage (< 10 cm); DT and RB include subsoiling to a depth of 40 cm; this greater depth of tillage has resulted in drier soil moisture likely due to increased infiltration.
- Soil moisture at 12 cm is higher for the CT treatment than VT, but this is opposite at 20 cm, suggesting more moisture is stored deeper in the profile with the VT treatment.