

# Ontario Canola Growers Association 2004 Crop Production Report

Crop Production Committee Shawn Schill – CPC Chair Marc McKeown — Director Jeff Kobe — Director

# Index

Page 3 – Farm history and plot management. Page 4 – Overview of 2004 O.C.G.A plot and projects. Page 5 – O.C.G.A variety showcase and trial. Page 6 – Summary of public variety trials. Page 7 – Elora public variety trial. Page 8 – Grand Valley public variety trial. Page 9 – Dundalk public variety trial. Page 10 – Wartburg public variety trial. Page 11 – New Liskeard public variety trial. Page 12 – Row width trials / Tillage trials Page 13 - Nitrogen trials/Starter trials and seed rate trials. Page 14 – Most profitable acre. Page 15 – John Deere Greenstar yield map. Page 16, 17 – Cabbage seedpod weevil (Brian Hall, OMAF) Page 18, 19 – Swede Midge. (Tracy Baute, OMAF) Page 20 - Sclerotenia Stem Rot (OMAF)

We would like to thank the following groups in their support of the CPC site as well CPC tour held in the summer:

| Inland Co-operative  | Cargill AgHorizons |
|----------------------|--------------------|
| Holmes Agro          | Pioneer            |
| Bayer Cropscience    | Sygenta            |
| Advanta              | Monsanto           |
| Matt & Sharon Coffey |                    |

## Farm History and Plot Management

Owners: Shawn and Bridget Schill

Farm area: 94.5 acres

Farm Location: Lot 2, concession 10, West Luther Twsp.

Soil Type: Clay-loam with tile drainage @ 40 foot intervals.

Previous crop: Corn

Date planted: June 2<sup>nd</sup> 2004

Last canola crop grown on farm: 4 Years prior.

Fall tillage: No fall tillage was performed

Spring tillage: Conventional tilled areas received two passes with a disc and two passes with a field cultivator.

Planting equipment: John Deere, 1860 no-till air drill.

<u>Nitrogen program</u>: 110 units of 28% liquid applied pre-emerge just prior to a light rain.

<u>P and K program</u>: a 10-40-30 starter was direct banded with seed.

<u>Herbicide programs</u>: Varity trial area had an application of Poast Ultra, Lontrel and Muster at label rates sprayed postemerge. No-tilled area received a liter of roundup applied along with U.A.N as a pre-plant application.

<u>Insect control</u>: No foliar control for insects was used as flea beetle and cabbage seedpod weevil pressure stayed below thresholds and spraying was not needed.

<u>Disease control</u>: No disease control was applied, although sclerotina infection was evident at harvest.

<u>Harvest equipment</u>: John Deere 9650 combine with 30 foot header. Pioneer weigh wagon. The total plot was straight harvested.

## Overview of 2004 OCGA plot and projects.

- 1. Showcase variety and yield plot.
- 2. Test yield differences between 7.5 inch rows versus 15 inch rows.
- 3. Test yield differences between conventional tillage versus no-till planting.
- 4. Test yield response from a canola inoculation product called Jumpstart.
- 5. Test yield response from different rates of starter fertilizer.
- 6. Test yield at different seeding rates.
- 7. Test yield at different nitrogen rates.
- 8. Assess all above trials and trial results and determine the most profitable production method



## Variety trial yield data.

Overview of variety plot:

- 1. All varieties were planted into conventional tillage.
- 2. Seed rate for all varieties was 5 lbs of seed per acre.
- 3. Helix Xtra was insect control on all seed.
- 4. Ground temperature was 16 degrees at time of planting.
- 5. Each variety was planted into a 1.3 acre area.
- 6. Herbicide control was applied post emerge using Venture, Muster and Lontrel.
- 7. Yield data was collected by weigh wagon.

| 0       | Mariata      |          |          | <b>T</b>    | Harvestab-   | Headstate Toold | Sclortenia    |
|---------|--------------|----------|----------|-------------|--------------|-----------------|---------------|
| Company | Variety      | Yield in | Moisture | Test weight | lity         | Herbicide Trait | Rating        |
|         |              |          |          | grams per   |              |                 |               |
|         |              | lbs/acre |          | 0.5         | 1= poor      |                 | 1= poor       |
|         |              |          |          | liter cup   | 10=excellent |                 | 10= excellent |
| Advanta | 357 RR       | 2334     | 9.9%     | 318 grams   | 9            | Roundup Ready   | 9             |
| Bayer   | Invigor 2643 | 2292     | 12.3%    | 331 grams   | 7            | Liberty Link    | 8             |
| Bayer   | Invigor 5020 | 2211     | 10.6%    | 324 grams   | 8            | Liberty Link    | 9             |
| Pioneer | 46H02        | 2139     | 9.6%     | 326 grams   | 9            | Conventional    | 6             |
| Pioneer | 45H21        | 2071     | 10.3%    | 326 grams   | 9            | Roundup Ready   | 5             |
| Advanta | Z2363        | 2067     | 8.4%     | 332 grams   | 8            | Conventional    | 9             |
| Advanta | 225 RR       | 1977     | 9.5%     | 329 grams   | 9            | Roundup Ready   | 7             |
| Advanta | Z2365        | 1947     | 9.4%     | 332 grams   | 8            | Conventional    | 8             |
| Pioneer | 45H24        | 1540     | 10.2%    | 333 grams   | 6            | Roundup Ready   | 2             |

| Elora,    | Summary o<br>Grand Valley, D | -    | •             | -              |
|-----------|------------------------------|------|---------------|----------------|
|           |                              |      |               |                |
|           |                              |      |               |                |
| Entry No. | Variety                      | Rank | Yield (kg/ha) | % of Check Yld |
| 1         | Hyola 401 (C1)               | 8    | 2659          |                |
| 2         | Senator (C1)                 | 12   | 2543          |                |
| 3         | Hyola 357 RR                 | 17   | 2455          |                |
| 4         | OAC Hurricane                | 27   | 2185          |                |
| 5         | OAC Tornado                  | 21   | 2333          |                |
| 6         | Canterra 1492CA              | 11   | 2587          |                |
| 7         | SC990158 (S2003)             | 14   | 2517          |                |
| 8         | 45H21                        | 6    | 2756          |                |
| 9         | 46H02                        | 5    | 2804          |                |
| 10        | 5020                         | 2    | 2920          |                |
| 11        | 5030                         | 1    | 3210          |                |
| 12        | 5070                         | 3    | 2916          |                |
| 13        | AP 7978 RR (1)               | 4    | 2879          | 111            |
| 14        | AP 7554 RR (1)               | 7    | 2728          | 105            |
| 15        | AP 7910 RR (1)               | 13   | 2533          | 97             |
| 16        | AP 504 RR (1)                | 28   | 2111          | 81             |
| 17        | AP 8244 (1)                  | 9    | 2619          | 101            |
| 18        | 45H24 (1)                    | 10   | 2612          | 100            |
| 19        | SC010081 (1)                 | 19   | 2389          | 92             |
| 20        | SC010241 (1)                 | 25   | 2254          | 87             |
| 21        | SC010238 (1)                 | 18   | 2400          | 92             |
| 22        | +PR10461 (1)                 | 24   | 2296          | 88             |
| 23        | +PR10462 (1)                 | 16   | 2513          | 97             |
| 24        | Z2409 (1)                    | 15   | 2514          | 97             |
| 25        | Z2363 (1)                    | 20   | 2381          | 92             |
| 26        | Z2365 (1)                    | 23   | 2321          | 89             |
| 27        | Z2104 (1)                    | 22   | 2328          | 90             |
| 28        | D1166 (1)                    | 26   | 2232          | 86             |
|           | No. Locations                |      | 5             |                |

|           | Public                         | Spring<br>Elora |               | nola Coop<br>04       |                |
|-----------|--------------------------------|-----------------|---------------|-----------------------|----------------|
|           | Planted May 13                 |                 |               |                       |                |
| Entry No. | Variaty                        | Bank            |               | Viold (kg/bo)         | % of Check Vid |
| Entry No. | Variety                        | Rank<br>3       | <u>n</u><br>4 | Yield (kg/ha)<br>2785 | % of Check Yld |
| 2         | Hyola 401 (C1)<br>Senator (C1) |                 | 4             | 2785                  |                |
| 3         | Hyola 357 RR                   | 5               | 3             | 2687                  |                |
| 4         | OAC Hurricane                  | 27              | 4             | 2133                  |                |
| 5         | OAC Humcane<br>OAC Tornado     | 27              | 4             | 2378                  |                |
| 5<br>6    | Canterra 1492CA                | 13              | 4             | 2506                  |                |
| 7         |                                | 21              | 4             | 2351                  |                |
| 8         | SC990158 (S2003)<br>45H21      | 7               | 4             | 2646                  |                |
| 9         | 46H02                          | 8               | 4             | 2606                  |                |
| 10        | 5020                           | 1               | 4             | 3199                  |                |
| 10        | 5030                           | 4               | 4             | 2725                  |                |
| 12        | 5070                           | 9               | 4             | 2603                  |                |
| 13        | AP 7978 RR (1)                 | 2               | 4             | 2993                  | 111            |
| 14        | AP 7554 RR (1)                 | 6               | 4             | 2668                  | 99             |
| 15        | AP 7910 RR (1)                 | 10              | 4             | 2602                  | 99             |
| 16        | AP 504 RR (1)                  | 25              | 4             | 2189                  | 81             |
| 17        | AP 8244 (1)                    | 12              | 4             | 2519                  | 94             |
| 18        | 45H24 (1)                      | 12              | 4             | 2392                  | 89             |
| 10        | SC010081 (1)                   | 26              | 4             | 2148                  | 80             |
| 20        | SC010241 (1)                   | 23              | 4             | 2214                  | 82             |
| 21        | SC010238 (1)                   | 14              | 4             | 2498                  | 93             |
| 22        | +PR10461 (1)                   | 28              | 4             | 2036                  | 76             |
| 23        | +PR10462 (1)                   | 16              | 4             | 2436                  | 91             |
| 24        | Z2409 (1)                      | 15              | 4             | 2476                  | 92             |
| 25        | Z2363 (1)                      | 22              | 4             | 2305                  | 86             |
| 26        | Z2365 (1)                      | 24              | 4             | 2195                  | 82             |
| 27        | Z2104 (1)                      | 17              | 4             | 2420                  | 90             |
| 28        | D1166 (1)                      | 18              | 3             | 2408                  | 90             |
|           | LSD (0.05)                     |                 |               | 352                   |                |
|           | C.V. (%)                       |                 |               | 10.0                  |                |

| Public Spring Canola Coop<br>Grand Valley, 2004 |                  |      |               |                |  |
|-------------------------------------------------|------------------|------|---------------|----------------|--|
|                                                 | Planted May 21   |      |               |                |  |
|                                                 |                  |      |               |                |  |
| Entry No.                                       | Variety          | Rank | Yield (kg/ha) | % of Check Yld |  |
| 1                                               | Hyola 401 (C1)   | 9    | 1677          |                |  |
| 2                                               | Senator (C1)     | 26   | 1397          |                |  |
| 3                                               | Hyola 357 RR     | 8    | 1722          |                |  |
| 4                                               | OAC Hurricane    | 19   | 1544          |                |  |
| 5                                               | OAC Tornado      | 20   | 1528          |                |  |
| 6                                               | Canterra 1492CA  | 27   | 1347          |                |  |
| 7                                               | SC990158 (S2003) | 10   | 1667          |                |  |
| 8                                               | 45H21            | 2    | 1985          |                |  |
| 9                                               | 46H02            | 15   | 1623          |                |  |
| 10                                              | 5020             | 7    | 1727          |                |  |
| 11                                              | 5030             | 1    | 2222          |                |  |
| 12                                              | 5070             | 16   | 1601          |                |  |
| 13                                              | AP 7978 RR (1)   | 4    | 1816          | 118            |  |
| 14                                              | AP 7554 RR (1)   | 5    | 1733          | 113            |  |
| 15                                              | AP 7910 RR (1)   | 24   | 1440          | 94             |  |
| 16                                              | AP 504 RR (1)    | 28   | 1337          | 87             |  |
| 17                                              | AP 8244 (1)      | 18   | 1549          | 101            |  |
| 18                                              | 45H24 (1)        | 21   | 1500          | 98             |  |
| 19                                              | SC010081 (1)     | 11   | 1654          | 108            |  |
| 20                                              | SC010241 (1)     | 25   | 1421          | 92             |  |
| 21                                              | SC010238 (1)     | 14   | 1627          | 106            |  |
| 22                                              | +PR10461 (1)     | 12   | 1644          | 107            |  |
| 23                                              | +PR10462 (1)     | 3    | 1834          | 119            |  |
| 24                                              | Z2409 (1)        | 17   | 1578          | 103            |  |
| 25                                              | Z2363 (1)        | 13   | 1628          | 106            |  |
| 26                                              | Z2365 (1)        | 22   | 1493          | 97             |  |
| 27                                              | Z2104 (1)        | 23   | 1493          | 97             |  |
| 28                                              | D1166 (1)        | 6    | 1730          | 113            |  |
|                                                 | LSD (0.05)       | -    | 355           |                |  |
|                                                 | C.V. (%)         |      | 15.5          |                |  |

|           |                  | Spring C<br>undalk, | anola Coop<br>2004 |                |
|-----------|------------------|---------------------|--------------------|----------------|
|           | Planted May 20   |                     |                    |                |
| Entry No. | Variety          | Rank                | Yield (kg/ha)      | % of Check Yld |
| 1         | Hyola 401 (C1)   | 11                  | 2375               |                |
| 2         | Senator (C1)     | 8                   | 2432               |                |
| 3         | Hyola 357 RR     | 21                  | 2132               |                |
| 4         | OAC Hurricane    | 27                  | 1875               |                |
| 5         | OAC Tornado      | 23                  | 2123               |                |
| 6         | Canterra 1492CA  | 6                   | 2459               |                |
| 7         | SC990158 (S2003) | 17                  | 2278               |                |
| 8         | 45H21            | 5                   | 2514               |                |
| 9         | 46H02            | 2                   | 2793               |                |
| 10        | 5020             | 13                  | 2342               |                |
| 11        | 5030             | 1                   | 3046               |                |
| 12        | 5070             | 3                   | 2704               |                |
| 13        | AP 7978 RR (1)   | 4                   | 2702               | 112            |
| 14        | AP 7554 RR (1)   | 15                  | 2317               | 96             |
| 15        | AP 7910 RR (1)   | 7                   | 2436               | 101            |
| 16        | AP 504 RR (1)    | 24                  | 2086               | 87             |
| 17        | AP 8244 (1)      | 9                   | 2388               | 99             |
| 18        | 45H24 (1)        | 10                  | 2383               | 99             |
| 19        | SC010081 (1)     | 19                  | 2195               | 91             |
| 20        | SC010241 (1)     | 28                  | 1818               | 76             |
| 21        | SC010238 (1)     | 14                  | 2328               | 97             |
| 22        | +PR10461 (1)     | 20                  | 2152               | 90             |
| 23        | +PR10462 (1)     | 12                  | 2351               | 98             |
| 24        | Z2409 (1)        | 16                  | 2297               | 96             |
| 25        | Z2363 (1)        | 22                  | 2124               | 88             |
| 26        | Z2365 (1)        | 18                  | 2265               | 94             |
| 27        | Z2104 (1)        | 26                  | 2007               | 83             |
| 28        | D1166 (1)        | 25                  | 2048               | 85             |
|           | LSD (0.05)       |                     | 342                |                |
|           | C.V. (%)         |                     | 10.5               |                |

| Planted April 29 | /artburg                                                                                                                                                                                                                                                                                                                                               | , 2004                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| -                |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Variety          | Rank                                                                                                                                                                                                                                                                                                                                                   | Yield (kg/ha)                                                                                                                                                                                                                                                                                                                                                                                       | % of Check Yld                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | 21                                                                                                                                                                                                                                                                                                                                                     | 2708                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| OAC Hurricane    | 27                                                                                                                                                                                                                                                                                                                                                     | 2464                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| OAC Tornado      | 16                                                                                                                                                                                                                                                                                                                                                     | 2831                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Canterra 1492CA  | 13                                                                                                                                                                                                                                                                                                                                                     | 2919                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SC990158 (S2003) | 5                                                                                                                                                                                                                                                                                                                                                      | 3182                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 45H21            | 11                                                                                                                                                                                                                                                                                                                                                     | 2970                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 46H02            | 7                                                                                                                                                                                                                                                                                                                                                      | 3089                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5020             | 4                                                                                                                                                                                                                                                                                                                                                      | 3264                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5030             | 1                                                                                                                                                                                                                                                                                                                                                      | 3649                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5070             | 2                                                                                                                                                                                                                                                                                                                                                      | 3305                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| AP 7978 RR (1)   | 8                                                                                                                                                                                                                                                                                                                                                      | 3046                                                                                                                                                                                                                                                                                                                                                                                                | 109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AP 7554 RR (1)   | 3                                                                                                                                                                                                                                                                                                                                                      | 3289                                                                                                                                                                                                                                                                                                                                                                                                | 118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AP 7910 RR (1)   | 19                                                                                                                                                                                                                                                                                                                                                     | 2747                                                                                                                                                                                                                                                                                                                                                                                                | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AP 504 RR (1)    | 28                                                                                                                                                                                                                                                                                                                                                     | 2191                                                                                                                                                                                                                                                                                                                                                                                                | 78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AP 8244 (1)      | 10                                                                                                                                                                                                                                                                                                                                                     | 2983                                                                                                                                                                                                                                                                                                                                                                                                | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 45H24 (1)        | 14                                                                                                                                                                                                                                                                                                                                                     | 2917                                                                                                                                                                                                                                                                                                                                                                                                | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SC010081 (1)     | 9                                                                                                                                                                                                                                                                                                                                                      | 2994                                                                                                                                                                                                                                                                                                                                                                                                | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SC010241 (1)     | 18                                                                                                                                                                                                                                                                                                                                                     | 2778                                                                                                                                                                                                                                                                                                                                                                                                | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| SC010238 (1)     | 24                                                                                                                                                                                                                                                                                                                                                     | 2569                                                                                                                                                                                                                                                                                                                                                                                                | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| +PR10461 (1)     | 25                                                                                                                                                                                                                                                                                                                                                     | 2537                                                                                                                                                                                                                                                                                                                                                                                                | 91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| +PR10462 (1)     | 15                                                                                                                                                                                                                                                                                                                                                     | 2914                                                                                                                                                                                                                                                                                                                                                                                                | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Z2409 (1)        | 17                                                                                                                                                                                                                                                                                                                                                     | 2802                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Z2363 (1)        | 6                                                                                                                                                                                                                                                                                                                                                      | 3095                                                                                                                                                                                                                                                                                                                                                                                                | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Z2365 (1)        | 26                                                                                                                                                                                                                                                                                                                                                     | 2481                                                                                                                                                                                                                                                                                                                                                                                                | 89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Z2104 (1)        | 20                                                                                                                                                                                                                                                                                                                                                     | 2712                                                                                                                                                                                                                                                                                                                                                                                                | 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| D1166 (1)        | 23                                                                                                                                                                                                                                                                                                                                                     | 2605                                                                                                                                                                                                                                                                                                                                                                                                | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| LSD (0.05)       |                                                                                                                                                                                                                                                                                                                                                        | 399                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| · ·              |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  | Hyola 401 (C1)   Senator (C1)   Hyola 357 RR   OAC Hurricane   OAC Tornado   Canterra 1492CA   SC990158 (S2003)   45H21   46H02   5020   5030   5070   AP 7978 RR (1)   AP 7978 RR (1)   AP 7910 RR (1)   AP 504 RR (1)   AP 504 RR (1)   SC010081 (1)   SC010241 (1)   SC010238 (1)   +PR10461 (1)   +PR10462 (1)   Z2363 (1)   Z2365 (1)   Z2104 (1) | Hyola 401 (C1) 12   Senator (C1) 22   Hyola 357 RR 21   OAC Hurricane 27   OAC Tornado 16   Canterra 1492CA 13   SC990158 (S2003) 5   45H21 11   46H02 7   5020 4   5030 1   5070 2   AP 7978 RR (1) 8   AP 7978 RR (1) 8   AP 7910 RR (1) 19   AP 8244 (1) 10   45H24 (1) 14   SC010238 (1) 24   +PR10461 (1) 25   +PR10462 (1) 15   Z2409 (1) 17   Z2365 (1) 26   Z2104 (1) 23   LSD (0.05) 10005 | Hyola 401 (C1) 12 2962   Senator (C1) 22 2636   Hyola 357 RR 21 2708   OAC Hurricane 27 2464   OAC Tornado 16 2831   Canterra 1492CA 13 2919   SC990158 (S2003) 5 3182   45H21 11 2970   46H02 7 3089   5020 4 3264   5030 1 3649   5070 2 3305   AP 7978 RR (1) 8 3046   AP 7970 RR (1) 19 2747   AP 504 RR (1) 28 2191   AP 8244 (1) 10 2983   45H24 (1) 10 2983   45H24 (1) 14 2917   SC010081 (1) 9 2994   SC010241 (1) 18 2778   SC010238 (1) 24 2569   +PR10462 (1) 15 2914   Z2409 (1) 17 2802   Z2363 (1) 6 3095   Z23 2 |

| Public Spring Canola Coop<br>New Liskeard, 2004 |                  |      |               |                |  |
|-------------------------------------------------|------------------|------|---------------|----------------|--|
|                                                 | Planted June 3   |      |               |                |  |
|                                                 |                  |      |               |                |  |
| Entry No.                                       | Variety          | Rank | Yield (kg/ha) | % of Check Yld |  |
| 1                                               | Hyola 401 (C1)   | 9    | 2796          |                |  |
| 2                                               | Senator (C1)     | 13   | 2627          |                |  |
| 3                                               | Hyola 357 RR     | 14   | 2617          |                |  |
| 4                                               | OAC Hurricane    | 17   | 2577          |                |  |
| 5                                               | OAC Tornado      | 26   | 2210          |                |  |
| 6                                               | Canterra 1492CA  | 16   | 2593          |                |  |
| 7                                               | SC990158 (S2003) | 20   | 2495          |                |  |
| 8                                               | 45H21            | 4    | 3135          |                |  |
| 9                                               | 46H02            | 10   | 2739          |                |  |
| 10                                              | 5020             | 2    | 3454          |                |  |
| 11                                              | 5030             | 1    | 3586          |                |  |
| 12                                              | 5070             | 3    | 3264          |                |  |
| 13                                              | AP 7978 RR (1)   | 7    | 2952          | 109            |  |
| 14                                              | AP 7554 RR (1)   | 5    | 3052          | 113            |  |
| 15                                              | AP 7910 RR (1)   | 21   | 2446          | 90             |  |
| 16                                              | AP 504 RR (1)    | 28   | 2002          | 74             |  |
| 17                                              | AP 8244 (1)      | 8    | 2816          | 104            |  |
| 18                                              | 45H24 (1)        | 6    | 2984          | 110            |  |
| 19                                              | SC010081 (1)     | 22   | 2412          | 89             |  |
| 20                                              | SC010241 (1)     | 12   | 2644          | 97             |  |
| 21                                              | SC010238 (1)     | 24   | 2278          | 84             |  |
| 22                                              | +PR10461 (1)     | 15   | 2605          | 96             |  |
| 23                                              | +PR10462 (1)     | 18   | 2512          | 93             |  |
| 24                                              | Z2409 (1)        | 11   | 2697          | 99             |  |
| 25                                              | Z2363 (1)        | 25   | 2257          | 83             |  |
| 26                                              | Z2365 (1)        | 23   | 2399          | 88             |  |
| 27                                              | Z2104 (1)        | 19   | 2495          | 92             |  |
| 28                                              | D1166 (1)        | 27   | 2049          | 76             |  |
|                                                 | LSD (0.05)       |      | 476           |                |  |
|                                                 | C.V. (%)         |      | 12.7          |                |  |

## Row width trials / Tillage Trials and Inoculation trial

- 1. Check plot Pioneer 46H02 planted at 5lbs to the acre in 7.5 inch rows. Conventional tillage passes performed.
- 2. Pioneer46H02 planted at 5lbs of seed to the acre in 15 inch rows. Conventional tillage passes performed.
- 3. Pioneer 46H02 planted at 5 lbs of seed to the acre in 7.5 inch rows. No-tilled directly into corn stubble.
- 4. Pioneer 46H02 planted at 5 lbs of seed to the acre in 15 inch rows. No-tilled directly into corn stubble.
- 5. Pioneer 46H02 planted at 5 lbs of seed to the acre in 7.5 inch rows. Treated at label rates with Jumpstart inoculants with a cost of \$5.75 acre.

| Trial                        | Variety       | Yield in | Ranking |
|------------------------------|---------------|----------|---------|
|                              |               | lbs/acre |         |
| 1-Conventional 7.5 inch rows | Pioneer 46H02 | 2139     | 4       |
| 2-Conventional 15 inch rows  | Pioneer 46H02 | 2058     | 5       |
| 3-No-till 7.5 inch rows      | Pioneer 46H02 | 2393     | 1       |
| 4-No-till 15 inch rows       | Pioneer 46H02 | 2315     | 2       |
| 5-Jumpstart inoculants       | Pioneer 46H02 | 2238     | 3       |



15 inch no-till canola

## Nitrogen Trials/Starter Trials and Seed rate trials

 Nitrogen trial was performed using 28% U.A.N and varying the application as below. The most cost effective application rate would be between 100-150 pounds of actual nitrogen applied. This is very close to the OMAF recommendation of 110-140 pounds.

| of actual applied | Cost per acre<br>using \$265/mt<br>U.A.N | Yield in Pounds | Gross income/acre<br>using \$300/mt<br>canola | Net Return/acre |
|-------------------|------------------------------------------|-----------------|-----------------------------------------------|-----------------|
| 50 units/actual   | \$21.46/acre                             | 1707 lbs/acre   | \$232.35/acre                                 | \$210.89/acre   |
| 100 units/actual  | \$42.92/acre                             | 2028 lbs/acre   | \$276.12/acre                                 | \$233.83/acre   |
| 150 units/actual  | \$64.39/acre                             | 2271 lbs/acre   | \$309.17/acre                                 | \$244.78/acre   |
| 200 units/actual  | \$85.85/acre                             | 2278 lbs/acre   | \$310.07/acre                                 | \$224.22/acre   |

2. Starter Trial was performed by using one blend of a 10-40-30 varied at different application rates as shown below.

| Percentage of a<br>10-40-30<br>starter | Cost per acre using<br>\$310/mt<br>starter blend | Yield in pounds | Gross income/acre<br>using<br>\$300/mt canola | Net return/acre |
|----------------------------------------|--------------------------------------------------|-----------------|-----------------------------------------------|-----------------|
| No starter applied                     | \$0/acre                                         | 1651lbs/acre    | \$224.72/acre                                 | \$224.72/acre   |
| 50 pounds or 38%                       | \$7.03/acre                                      | 2110 lbs/acre   | \$287.20/acre                                 | \$280.17/acre   |
| 100 pounds or<br>77%                   | \$14.06/acre                                     | 2236 lbs/acre   | \$304.35/acre                                 | \$290.29/acre   |
| 150 pounds or<br>115%                  | \$21.09/acre                                     | 2210 lbs/acre   | \$300.81/acre                                 | \$279.72/acre   |
| 200 pounds or<br>154%                  | \$28.12/acre                                     | 2114 lbs/acre   | \$287.74/acre                                 | \$259.62/acre   |

3. Seed rate trials were performed varying pounds applied seed as shown below. Pioneer 46H02 was used as test variety.

| Seed rate<br>in Ibs/acre using<br>Pioneer 46H02 | Cost per acre using<br>\$7/pound<br>seed costs | Yield in pounds | Gross income/acre<br>using<br>\$300/mt canola | Net return/acre |
|-------------------------------------------------|------------------------------------------------|-----------------|-----------------------------------------------|-----------------|
| 7 lbs of seed/acre                              | \$49/acre                                      | 2390 lbs/acre   | \$325.31/acre                                 | \$276.31/acre   |
| 6 lbs of seed/acre                              | \$42/acre                                      | 2456 lbs/acre   | \$334.30/acre                                 | \$292.30/acre   |
| 5 lbs of seed/acre                              | \$35/acre                                      | 2575 lbs/acre   | \$350.49/acre                                 | \$315.49/acre   |
| 4 lbs of seed/acre                              | \$28/acre                                      | 2510 lbs/acre   | \$341.65/acre                                 | \$313.65/acre   |
| 3 lbs of seed/acre                              | \$21/acre                                      | 2375 lbs/acre   | \$323.27/acre                                 | \$302.27/acre   |

The most cost effective seed rate was 4-5 pounds/acre. Would recommend 5 lbs/acre on early planting-cooler soils and move lower to 4 lbs/acre on later planting-warmer soils.

### Most Profitable Acre

Scenario #1: This scenario is what is most commonly used by producers. Crop is grown as listed below.

- 1. Plant Hyola 357 RR @ 5 lbs an acre. Plant in 7.5 inch rows. Pay \$420 a bag for the seed.
- 2. Do conventional tillage. One pass of fall tillage and two passes of spring tillage.
- 3. Pay Monsanto \$15 an acre for T.U.A fees
- 4. Spray a 0.5 liter of transorb per spray pass. Possibly spraying twice.
- 5. Have to spend money on volunteer control of Roundup Ready canola in following Roundup Ready soybean or corn crops.

Scenario #2: This scenario is what would lead to the highest net returns per acre considering data taken from plot results.

- 1. Plant Pioneer 46h02 @ 4 lbs an acre. Plant in 15 inch rows or 7.5 inch rows. Pay \$315 a bag for seed.
- 2. Plant the crop with the no-till method gaining a 9.3% yield advantage over conventional tillage.
- 3. Apply 28% liquid fertilizer and do a pre-plant burn down with roundup in the same pass. Possibly having to do conventional weed controls post emerge.
- 4. Do not have to pay T.U.As or worry about controlling volunteer canola in future crops.

| Expenses                            | Scenario #1     | Scenario #2          |
|-------------------------------------|-----------------|----------------------|
| Land costs                          | \$100.00        | \$100.00             |
| Seed                                | \$37.27         | \$22.91              |
| Fall Tillage                        | \$20.00         | \$0.00               |
| Spring Tillage                      | \$24.00         | \$0.00               |
| Planting                            | \$17.50         | \$20.00              |
| Nitrogen                            | \$47.22         | \$47.22              |
| Starter                             | \$14.06         | \$14.06              |
| Nitrogen Application                | \$9.50          | \$9.50               |
| Pre-plant Roundup                   | \$0.00          | \$9.90               |
| T.U.A                               | \$15.00         | \$0.00               |
| Herbicide Chemical                  | \$9.90          | \$0                  |
| Herbicide Application               | \$16.00         | \$8.00               |
| Combining                           | \$30.00         | \$30.00              |
| Trucking                            | \$6             | \$6                  |
| Volunteer RR canola/                |                 |                      |
| control in following                |                 |                      |
| crops                               | \$10.00         | \$0.00               |
| Revenue below was                   |                 |                      |
| determined using                    |                 |                      |
| \$300/mt canola FOB local elevator. |                 |                      |
|                                     | 2334 lbs        | 2338 lbs             |
| Yield in lbs per acre               |                 |                      |
| Gross Revenue/acre                  | \$317.69        | \$318.23<br>\$268.50 |
| Gross Expense/acre                  | \$356.45        | \$268.59             |
| Net Income/acre                     | <u>-\$38.76</u> | <u>\$49.64</u>       |

This cash flow is assuming all machinery expenses at custom rates. No expenses shown for potential insect or disease control. No extra expenses for weed control in scenario #2 as preplant roundup was adequate weed control. Land cost depends on Producer.

## Cabbage Seedpod Weevil (CSW) by Brian Hall, OMAF

The cabbage seedpod weevil was first identified in Mid-Western Ontario in 2001, but growers in southwestern Ontario report finding the pest before this. Since then, the CSW distribution has increased throughout canola growing areas. Populations of the weevil in affected areas have also continued to increase. In 2003, damage from the CSW appeared to be most serious in winter canola but spring canola was also affected. Yield losses from the weevil have not been well documented in Ontario, but in Alberta and Saskatchewan, yield reductions of up to 30 - 40% have occurred. In the future, scouting and controlling the cabbage seedpod weevil will be critical to prevent economic losses. No research on the CSW has been conducted in Ontario. Current information and economic thresholds are based on information for Western Canada.

#### Life Cycle

The CSW overwinters in the adult form in protected areas like fencerows and shelterbelts under leaf litter. In the spring, the adults emerge from wintering sites when soil temperatures are above 12 °C and begin to fly to feed on early flowering cruciferous plants (volunteer canola, stinkweed, wild mustard). The adult weevils move to canola fields when the crop is at the bud to early flower stage to feed on pollen and buds. In areas where both winter and spring canola are grown, the adult weevils move from the winter to spring canola as flowering progresses. Females lay their eggs inside newly developing canola pods. The larvae feed on the developing seeds within the canola pod. At maturity, the larvae chew through the pod wall and drop to the soil to pupate. Within 10 days, the larvae pupate to adults and emerge from the soil. These adults then feed on green pods by penetrating the pod wall with their snout and sucking out the seed tissue. Late flowering spring canola is prone to damage from this second generation of weevil adults.



#### Crop Damage

Crop damage occurs in several ways. 1. Adults feeding on buds, cause bud-blasting thus reducing yield potential. 2. Larvae feeding on seeds within developing pods cause the most serious damage. Each larvae will consume approximately 5 seeds. Pods are weakened and prone to shattering. 3. Larvae chew exit holes in the pod when ready to pupate. These holes provide an entry point for fungal infection. 4. The new generation of adults in August feed directly on canola seeds through pod walls. 5. The CSW can also reduce seed quality. Research has shown reductions of seed oil content by 2.2%, seed weight by 16.2 %, and seed germination by 40.5%.

#### Management

Early scouting when the crop is at the bud stage through flowering is critical for managing the CSW. Thresholds from the United States and western Canada indicate 2 to 5 weevils per sweep warrants control. Canola fields with high yield potential will warrant control at the lower end of this range. Matador is the only product currently registered for control. Application timing is when the crop is in the 10 to 20% bloom stage (2-4 days after flowering starts). The adult form of the CSW must be controlled, because Matador will not affect the larvae feeding inside the pods. Invested fields are often noticeable by the presence of flocks of birds that forage on the adult weevils.

For Further information refer to OMAF publication 812, Field Crop Protection Guide; the Canola Growers Manual CD – ROM available from the Canola Council (http://www.canola-council.org), Alberta Agriculture factsheet http://www.agric.gov.ab.ca/agdex/600/622-21.html.



### Swede Midge Found In Canola In Ontario by Tracey Baute - Field Crop Entomologist/OMAF

Suspected Swede midge injury was been reported in a few fields in Ontario. While surveying 32 fields for cabbage seedpod weevil, 6 fields were found to have evidence of Swede midge injury. The 6 fields were located in the Grand Valley area; currently an area listed as quarantined for cole crops due to Swede midge by CFIA. Two of the fields were planted with winter canola. The remaining four were spring canola fields. CFIA is currently investigating the situation.

The swede midge has been very troublesome for the cole crop industry since it was first identified in Ontario in 2000. A native insect of Europe and Asia, this gall midge is a common pest of cruciferous vegetable crops such as cauliflower and broccoli but can also infest alternative crucifer hosts like wild mustard, canola and shepherd's purse. In the cole crop industry this pest has caused serious losses in crop yield and marketability.

This insect overwinters as a pupa in the soil and emerges as an adult approximately mid May to early June. The adult midge is a very tiny fly (1.5 - 2 mm), difficult for even us entomologists to properly identify from other closely related species (Fig 1). Once mated, the female will lay her eggs on a host crop, typically in clusters of 2-50 eggs on the youngest and most actively growing portions of the plant. These eggs hatch and the small maggot larvae feed on the plant tissue, which results in stunting, distortion and/or death of the growing point (Fig 2). In cole crops, injury has been so substantial; some growers have had to plow down the crop and replant. Once mature, the larvae fall to the soil to pupate and continue the cycle. The pupa can survive in the soil for up to two years before emerging as adults. Research conducted in Ontario indicates that there are three to four overlapping generations per year.

It appears that its impact on canola may be strongly dependent on planting date (i.e. crop stage at time of infestation), crop rotation and infestation levels. If the plants are infested at a very young crop stage, the canola plants can be extremely stunted and malformed (Fig 3). This was observed at one of the Ontario locations where the field was planted very late for research purposes. The remaining five locations were planted much early (at more normal planting dates for that area). These plants were well advanced when the midge injury took place. These plants seemed to compensate for the injury by still producing all of its pods but clustering them at the midge feeding site. Infested plants developed what I would call a "bouquet" of pods (Fig 4). Preliminary observations indicate that pod number and size did not differ from plants that were not infested. However, this is dependent on how well advanced the plant is when the adult lays her eggs.

Management of this insect is a challenge. Monitoring with traps is proving difficult. Instead, growing degree day models are being tested in hopes of finding a way to predict when the adults are flying. Insecticides have been successfully used in cole crops to control the adults. However, this strategy requires proper timing and repeated sprays because of the overlapping multiple generations. In canola, spraying insecticides every week to prevent egg laying is just not practical. For canola, the best strategy at this point may be to focus on proper crop rotation and weed management. The pupa can survive for up to two years in the soil. If growers follow a good three year rotation system (i.e. do not plant a crucifer host crop for two years in that field following canola), the insect will

emerge from that field without a host plant to feed on. Removing volunteer canola and closely related weed species like wild mustard is also important. If you do find midge in your field, limiting the movement of soil from that field to another will also help to reduce its spread. Research will also focus on biocontrol agents, plant breeding for resistance/ tolerance and systemic insecticides that control the larvae.

To date, this pest has not been found elsewhere in North America. The adult itself is a very weak flyer, so as a result, the Canadian Food Inspection Agency has quarantined counties where swede midge was found in attempts to limit its spread. If it can't fly that far, the spread is more limited to the movement of plant material and soil by humans. Currently, swede midge has been found in eight counties in Ontario.

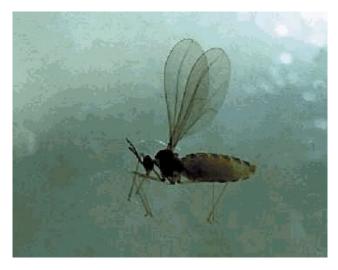



Figure 1. Swede Midge Adult (Klaus Schrameyer, ALLB, Heilbronn)



Figure 2. Swede midge injury on cabbage. Note multiple side shoots and secondary bacterial infection. (Klaus Schrameyer, ALLB, Heilbronn

### Spring and Winter Canola

### White Mould (Sclerotinia Stem Rot)

#### Incidence

White mould is a canola disease that is sporadic within a region and varies greatly from year to year. This makes predicting disease potential or outbreaks very difficult. The disease is very destructive during periods of prolonged, wet weather. Losses of up to 50% can occur under ideal conditions.

#### Appearances

White mould is characterized by bleached stem lesions and hard black bodies (sclerotia) of white mould fungus inside the stems; it causes premature ripening of the plants.

The disease is often a problem when canola follows canola, white beans, soybeans or sunflowers. Infections that start on the dead blossoms spread to adjacent tissues, resulting in dead branches or dead plants. Plants may lodge. The rotted stems usually have a bleached appearance. Sclerotinia infections can be serious on canola if cool, wet weather occurs in the last 2 weeks of June and continues into early July when blossoming occurs.



White mould (Sclerotinia stem rot) causes white (bleached) stem lesions and hard black bodies in the stems.

#### **Management Strategies**

Use clean, certified seed and rotations of at least 4 years, including unaffected crops such as corn, wheat, barley or oats in fields with a history of Sclerotinia or white mould. During this rotation, it is necessary to avoid planting susceptible crops including mustard, sunflower, dry bean, soybean, field pea, lentil or garbanzo bean. At present, no resistant varieties exist. Keep fields clean of broad-leaved weeds since many are alternate hosts for this disease. Foliar fungicide treatments are effective but require scouting and precise timing.