Mapping clubroot resistance genes in Chinese cabbage and ECD accessions of *B. rapa*

Arvind H. Hirani and Genyi Li Department of Plant Science University of Manitoba Winnipeg, Canada

2013 International Clubroot Workshop, Edmonton, Canada 19-22 June, 2013

Outline of presentation

- Genetic of clubroot disease in Brassica species
- Mapping clubroot resistance genes in Chinese cabbage and ECD set
- Future research avenue
- Summary

Genetic of clubroot resistance in *Brassica* species

Types of resistance

- Race specific or Qualitative or Vertical resistance
 - i.e. Crr1, Crr2, Crr3, CRa, CRk, CRc
- Non-race specific or Quantitative or Horizontal resistance
- Over 230 R gene sequences revealed in B. rapa sequenced genome representing 16 gene families

Resistance genes in *B. rapa* - How many for CR?

Home Browse Search Tools

Brassica Database

Resistance genes in B. rapa

Index	Gene family	Number of genes
1	CC-NBS	14
2	CC-NBS-LRR	<u>41</u>
3	NBS	9
4	NBS-CC-NBS	1
5	NBS-LRR	20
6	NBS-LRR-TIR-NBS-LRR	1
7	TIR-NBS	22
8	TIR-NBS-LRR	90
9	TIR-NBS-LRR-NBS-LRR	1
10	TIR-NBS-LRR-TIR	<u>2</u>
11	TIR-NBS-LRR-TIR-NBS-LRR	1
12	TIR-NBS-TIR-NBS-LRR	1
13	TIR-NBS-X	1
14	TIR-Only	<u>35</u>
15	TIR-TIR	<u>2</u>
16	TIR-X	<u>3</u>

Source: http://brassicadb.org/brad/Rgene.php

Mapping and fine mapping a clubroot resistance gene in Chinese cabbage

Population development for mapping and fine mapping

Fine mapping clubroot resistance locus in Chinese cabbage

- Phenotype evaluation revealed single Mendelian locus for clubroot resistance in Chinese cabbage
- SRAP markers found to be co-segregated with clubroot resistance phenotype
- These SRAP markers were located on linkage group R3 on ultra-dense genetic linkage map (Sun et al. 2007)
- Over 8,000 BC₂ individual plants were used for fine mapping this locus
- 219 recombinant individuals were used for cloning and markers development
- This CR locus was introgressed from B. rapa to B. napus by modified backcross breeding
- Molecular markers were developed in canola for marker assisted selection

Mapping clubroot resistance locus in Chinese cabbage

Generations	Total	CR Resistance	CR Susceptible	Ratio
F ₂	85	67	18	3:1
BC_1	67	30	37	1:1

Molecular markers developed for clubroot resistance loci for MAS in canola

Mapping clubroot resistance loci in ECD set

- The <u>European Clubroot Differential</u> (ECD) set was evaluated for clubroot resistance by Canadian field isolate of *P. brassicae*
- Clubroot resistance accessions of ECD set, ECD1, ECD2, ECD3 and ECD4 were used as resistance parents
- BC₁ populations were evaluated for clubroot disease by Canadian field isolate of *P. brassicae*
- One or two gene segregation ratio observed in BC₁ populations of ECDs
- All the BC₁ populations were screened by markers developed for R3 specific CR locus based on Chinese cabbage
- For additional locus, over 150 SRAP primer pairs were used to find co-segregation
- New SSR markers developed based on SRAP marker linkage on ultra-dense genetic map

Clubroot disease evaluation of ECD set by Canadian field isolate

FCD accessions	Clubroot ratings					
ECD accessions	0	1	2	3		
ECD1	35	0	0	0		
ECD2	43	0	0	0		
ECD3	39	0	0	0		
ECD4	43	0	0	0		
ECD5	0	2	2	43		
ECD6	4	0	2	35		
ECD7	0	2	2	29		
ECD8	2	0	1	29		
ECD9	9	3	3	21		
ECD10	24	0	0	4		
ECD11	41	0	0	0		
ECD12	22	0	0	0		
ECD13	12	0	6	13		
ECD14	0	2	2	16		
ECD15	18	2	4	9		

Single locus segregating BC₁ families derived from ECDs

BC ₁ Families	Resistant	Susceptible	Total	χ²	P value	Ratio	DF
BC ₁ -A1	24	22	46	0.09	0.77	1:1	1
BC ₁ -A2	39	37	76	0.05	0.82	1:1	1
BC ₁ -A3	14	15	29	0.03	0.85	1:1	1
BC ₁ -A4	22	18	40	0.40	0.53	1:1	1

Two CR loci segregating BC_1 families derived from ECDs

Pedigree	Resistant	Susceptible	Total	P value	Ratio	DF
BC ₁ -B1	76	22	98	0.56	3:1	1
BC ₁ -B2	40	15	55	0.70	3:1	1
BC ₁ -B3	30	6	36	0.25	3:1	1
BC ₁ -B4	14	5	19	0.89	3:1	1
BC ₁ -B5	27	9	36	1.00	3:1	1

Segregation of clubroot phenotypes in ECD derived BC₁

1:1

3:1

Microsatellite markers linked with CR genes

Future research avenues

- Integration of clubroot resistance loci from B. rapa to B. napus
- Clubroot disease evaluation on NIL with single locus in same genetic background with different isolates of P. bassicae
- Functional characterization of all the loci through canola transformation
- Determination of structural and functional variations of resistance loci between and within ECD accessions
- Development of SCAR and SNP markers (functional markers) for MAS in canola
- Pyramiding of resistance loci for durable resistance to clubroot disease

Summary

- Single clubroot resistance locus mapped and fine mapped in five Chinese cabbage cultivars
- This locus was introgressed from Chinese cabbage to canola through MAS
- Two clubroot resistance loci mapped in ECD derived BC₁ populations
- ECD accessions (1 to 4) are segregating for one or two loci for clubroot resistance
- Two loci are mapped and mapping of the third clubroot resistance locus is underway
- NIL with single clubroot resistance locus developed in same genetic background
- Molecular markers developed for MAS in canola

Acknowledgment

- Clubroot resistance research group at UM
 - Dr. Genyi Li, Dr. Peter B. E. McVetty, Dr. Feng Gao
 - Dr. Zheng Liu, Dr. Yaping Wang
- Researchers from Monsanto Canada Inc.
 - Dr. Chunren Wu, Mr. Jun Liu, Ms. Guohua Fu
- Funding
 - Agri-Food Research and Development Initiative
 - Monsanto Canada Inc.
 - NSERC

