

Agriculture and Agri-Food Canada Agriculture et Agroalimentaire Canada

Crop rotation, cultivar resistance, and biofungicide for clubroot control on canola

Peng G, Lahlali R, Hwang SF¹, Pageau D², Hynes RK, Gossen BD, McDonald MR³ Strelkov SE⁴

AAFC Saskatoon Research Centre, Saskatoon, SK

¹Alberta Agriculture, Edmonton, AB
²AAFC Research Farm, Normandin, QC
³Univ. of Guelph, Guelph, ON
⁴Univ. of Alberta, Edmonton, AB

Resistance is the cornerstone for clubroot management on canola

- Allowed canola to be grown again in fields with extremely high levels of pathogen inoculum only a few years ago
- Significantly better crops and higher yields than a cv. -in heavily infested fields
- Less amount of pathogen inoculum going back into the soil

Susceptible

Resistancebut not "Immunity"

- R genes are race specific. May be eroded with shifting in pathogen race structure
- Clubroot severity increased when a R cv. was exposed repeatedly to same pathogen population (*LeBoldus et al.*, 2012)

10⁸ spores/mL

cultivar

R

- small, spheroid, resistanttype galls (Osaki et al. 2008)
- Limited R sources
- Resistance stewardship

Additional measures helpful?

Crop Rotation

- Benefits to crop production are well recognized
- Important disease management tool for many field crops
 for example, blackleg of canola in western Canada
- A 3-year rotation (canola cereal pulse) is considered sustainable (Cathcart *et al.*, 2006), but a 2-year rotation of canola with a cereal crop or even continuous canola is no longer uncommon (Hartman, 2012)
- Is 3- or 4-yr crop rotation effective for clubroot control?

Impact of crop rotation on *P. brassicae* resting spores in soils

- Based on bioassay results, the 'half life' of *P. brassicae* resting spores in field soils was estimated at about 4-5 years (Wallenhammar, 1996; Hwang *et al.*, 2013)
- In micro plots based on disease severity, a faster rate of decline of *P. brassicae* resting spores was indicated when non-host crops or fallow was used for 1-3 years (Robak, 1994)
- There has been no information on the effect of a break from canola to alleviate clubroot impact (crop development and yield) in field

- sufficiently effective for reducing pathogen inoculum and clubroot severity?

PCR has been developed for direct enumeration of resting spores in soils (Wallenhammar et al., 2012; Rennie et al., 2011)

When the pathogen inoculum is reduced in the soil

- Reducing pathogen resting spores in the soil by 10-fold substantially lowered the clubroot severity under controlled conditions
- Can crop rotation result in such a significant reduction in pathogen inoculum under filed conditions?

5 x 10⁶ spores/g soil

5 x 10⁵ spores/g soil

Chemical/biological control?

- Cheah LH et al. 2000. Biological control of clubroot on cauliflower with *Trichoderma* and *Streptomyces* spp. *NZ Plant Prot.* 53, 18–21.
- Mitani et al. Effects of cyazofamid against Plasmodiophora brassicae Woronin on Chinese cabbage. Pest Man. Sci., 59, 287–293
- Narisawa K et al. 1998. Suppression of clubroot formation in Chinese cabbage by the root endophytic fungus, *Heteroconium chaetospira*. *Plant Pathol.* 47, 206–210
- Townley & Fox. 2003. Control of clubroot disease using cyazofamid and fluazinam fungicides. In: Proc 8th Int. Cong. Plant Pathol. Feb. 2–7, 2003, Christchurch, N.Z.

No information on large-acreage crops like canola

Work conducted lately in Canada

- 5,000 indigenous soil microbes were assessed for the potential of clubroot control
- Applied as a soil drench, and efficacy compared with biological and synthetic fungicides registered in Canada or USA

Efficacy of indigenous microbes

Efficacy of soil microbes against clubroot on canola

26-50	50-75	75-100
		75-100
7**	1	3
13	2	0
7	1	0
5	7	1
	5	5 7

**Number of isolates in the category

The indigenous candidates were less consistent than biofungicides under controlled conditions

Biofungicides & fungicides

- Serenade (Bacillus subtilis)
- Prestop (Clonostachys rosea)
- Allegro (Fluazinam)
- Ranman (Cyazofamid)

Effective when applied as a liquid under controlled-environment conditions

Biofungicide treatment (soil drench)

Modes of action for biofungicides

Up regulation: Phenylpropanoid (phenylalanine ammonia lyase- PAL), jasmonic-acid & ethylene pathways

Defense responses were also induced in canola leaves where the infection by *Leptosphaeria maculans* was delayed for 12 days

Field application of fungicides/biofungicides

Liquid formulation

in-furrow

> 500 L/ha

Poor efficacy against clubroot on canola

Biofungicide x cultivar resistance (n=8)

In controlled conditions

Granular formulation of Bacillus subtilis

- Deliver maximum amounts of Bacillus subtilis "spores" (50 kg formulation/ha)
- Ease of application (with seeding)
- Cost effectiveness

I. Fungicide/biofungicide formulation x resistance (Leduc & Edmonton, AB; Normandin, QC)

- Cultivar resistance was highly effective: Clubroot severity was reduced and yield increased
- None of the fungicide or biofungicide treatments was effective, and there was no treatment by cultivar interaction
- The same trend was with all three trials

Leduc, AB (2011)

Seeding date: May 28, 2011

Biofungicide seed treatment

- Seed dressing with the Bacillus subtilis biofungicide
- Moderately suppressive to clubroot at low pathogen inoculum pressure (not a stand-alone option)
- Using the commercial seed treatment formulation L1782
- Low to very high titre at 4 equal increment rates (1 × 10⁵ to 5 × 10⁶ cfu/seed)

II. Crop rotation x biofungicide

Crop rotations:

- 1. Canola-barley-canola (1-year break)
- 2. Canola-barley-field pea-barley-canola (3-year break)
- 3. Continuous barley (11-year break, for comparison only)

Biofungicide (B. subtilis) seed treatment

At low, medium, high, and very high rates to a susceptible cultivar

Assessment:

Impact of crop rotation on resting spores in soil –Bioassay, qPCR

- Soil test/fertilization, seedling counts, flea beetle control
- Clubroot severity (0-3) at late flowering
- Impact on crop development (0-4) during ripening
- Seed yield

III. Crop rotation x cultivar resistance

Crop rotations:

- 1. Continuous canola (no break)
- 2. Canola-barley-canola (1-year break)
- 3. Canola-barley-pea-canola (2-year break)
- 4. Canola-barley-pea-barely-canola (3-year break)
- 5. Canola-barley-pea-barely-fallow (4-year break)

Canola cultivar:

- 1. 45H26 susceptible (S)
- 2. 45H29 resistant (R)
- 3. InVigor 5030 moderately resistant (MR/MS)

Assessment:

- B. brassicae inoculum in soil qPCR (direct quantification)
- Soil test/fertilization, seedling counts, flea beetle control
- Clubroot severity(0-3), crop impact (0-4), and seed yield

Results

I. Effect of crop rotation on P. brassicae inoculum in soil

a. Bioassay of soil samples

b. Early pathogen development in roots (qPCR, 2011)^a

Crop rotation	Bioassay	qPCR (ng/g	g fresh root)
(Years of break)	(DSI%)	Field trial 1	Field trial 2
1 year	74.8 a	11.6 a	> 100 a
3 years	47.0 b	7.3 b	8.4 b
11 years	28.3 c	8.7 b	3.2 c

^a Soil samples were taken prior to trials and root samples were from nontreated control plots 4 weeks after seeding

Both methods were indirect

Direct estimate of *P. brassicae* resting spores in soil using qPCR (2012)

A break from canola (year)	Resting spores /g soil ^a
0	2.7 x 10 ⁶ bc
1	2.9 x 10 ⁶ c
2	5.7 x 10 ⁴ a
3	2.1 x 10 ⁵ ab
4	1.1 x 10 ⁵ ab

^a Based on 8 replicated blocks of each rotation in two trials

A > 2-year break from canola reduced *P. brassicae* resting spores in the soil by at least 10 fold relative to 0- or 1-year break

II. Crop rotation x biofungicide seed treatment

- Neither B. subtilis seed dressing (regardless of the rate) nor the crop rotation reduced clubroot severity substantially
- In longer rotation plots, however, the galls were slightly smaller

Clubroot impact on crop development

 B. subtilis seed dressing had no effect
 Longer rotation reduced clubroot impact (pooled data over all seed treatment rates)

Canola seed yield

- Biofungicide seed treatment showed no effect
- A >3-yr break from canola had higher yields for S cv.
- Overall, the yield was poor (<1 ton/ha) with S cv.</p>
- Rotation alone was not enough to allow the S cv. to reach its yield potential

-yr break

Biofungicide seed-treatment rate

III. Crop rotation x cultivar resistance

Clubroot severity at flowering was reduced by R cv. but not by crop rotation on S or MS cvs.

Impact on crop development: A >2yr break from canola reduced disease impact on S and MS cvs. No effect on R cv. (two trials)

0-Year break

Continuous canola: There was hardly any S and MR/MS plants left, **R looked thin**

1-Year break

MP

1-year break: Not much different from 0-year break, **R also looked thin**

2-Year break

Two- to 4-year breaks:

Gradually increased stand for S and MR/MS, but crop was still much poorer than R

R plots were fuller

Plot appearance reflected the yield

3-Year break

4-Year break

A >2-yr break showed higher yields on S and MR, but overall yields were low (>0.5 T/ha). On the R cultivar, a >2-yr break had a **25%** yield increase relative to continuous canola

Effect of cultivar and rotation on yield of canola - Quebec 2012

(Two trials combined)

Summary

- A >2-year break from canola reduced *B. brassicae* resting spores in the soil substantially
- Long rotation alone is not enough to allow a S or MS cv. to reach yield potential in heavily infested fields
- A resistant cultivar, in conjunction with a >3-year crop rotation may allow maximum yield potential in heavily infested fields, as well as reducing the pathogen inoculum loads in the soil

Agriculture and Agri-Food Canada Agriculture et Agroalimentaire Canada

Acknowledgement

Linda McGregor, Dan Hupka, Jon Geissler, George Turnbull, Isabelle Morasse and Derek Rennie for technical support

AAFC CRMI, ADF, SaskCanola and ACIDF provided funding for this research

Thank you

Canada