Mapping and cloning clubroot resistance genes in *B. rapa*

Dr. Genyi Li

University of Manitoba

Gene characterization and marker assisted selection (MAS)

- ❖To map gene positions in the genome
- ❖ To distinguish gene interactions with isolates
- ❖ To develop molecular markers for each locus
- ❖To perform MAS to accelerate breeding cycles
- ❖To pyramid different resistance genes and develop canola cultivars with durable resistance

Mapped genes of clubroot resistance in B. Rapa and B. napus

Linkage group	Gene names	Genetic distance (cM)	References
A01	Crr2	2.2	Suwabe et al. 2003, 2006).
A02	CRc	5.1	Sakamoto et al, 2008
A03	Crr3, CRa, CRb, CRk	3-15	Sakamoto et al, 2008
A06	Crr4	2.7	Suwabe et al. 2003, 2006).
A08	Crr1	1.6	Suwabe et al. 2003, 2006).
C2, C3. C7	CR-QTL		Nagaoka et al. (2010)
N3, N5, N8	CR-QTL		Werner et al. (2008)
N13, n15, N16, N19	CR-QTL		Werner et al. (2008)

Many resistance genes in the genomes?

Indoor testing of clubroot resistance in Chinese cabbage cultivars with Canadian isolates

Gene mapping and allelic gene testing

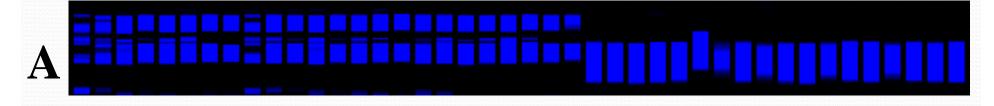
- ❖Five Chinese cabbage cultivars with clubroot resistance
- Three BC1 and two F2 populations were developed using five Chinese cabbage hybrid cultivars
- ❖Gene mapping showed that one Mendelian gene in each population
- All genes were mapped into the same position on A3 chromosome

Gene testing in BC1 and F2 populations of five Chinese cabbage cultivars and a susceptible *B. rapa* rapeseed

Mappin Clubroot symptom scoring*				Expected ratio	X2 test (p value)	
populati ons	0	1	2	3		
BC1a	29	1	7	30	1:1	0.39 ns
BC1b	28	0	9	23	1:1	0.61 ns
BC1c	41	0	7	39	1:1	0.59 ns
BC1d	38	1	2	11	3:1	1 ns
F2a	44		2	16	3:1	0.46 ns
CK	0	0	0	44		

Fine mapping and identification of candidate clubroot resistance genes

- ❖ 18 SSR, SCAR and SNP molecular markers flanking the clubroot resistance genes on A3 were developed.
- Two flanking markers were used to find 219 recombinants from 8000 BC2 individuals.
- ❖ There are four recombinants that were used to pinpoint the gene in a 50 kb region.
- ❖ Several clubroot resistant gene candidates in the 50-kb region were identified.


Complemetary and RNAi transformation with candidate genes of clubroot resistance on A3

- ❖ A BAC library with 200,000 BAC clones
- Covering approximate 20 times of the whole genome
- ❖ Seven positive BAC clones anchoring the molecular markers The selected positive BAC clones were used to make transformation constructs.
- Two constructs with 15 kb and 12 kb fragments
- * Two RNA interference (RNAi) constructs
- ❖ About 15 transgenic plants for each construct

Testing of Monsanto's breeding materials developed with two clubroot resistant sources*

Resistant individuals (R-1 to R-24)

Susceptible ones (S-1 to S-18)

B

Resistant individuals (R-1 to R-24) Susceptible ones (S-1 to S-18)

*Molecular marker SCAR3 on N3 co-segregated with a clubroot resistance locus in Monsanto's breeding lines derived from one clubroot resistant source and did not in another source.

Panel A: Resistant source 1 (perfect matches with phenotypes)

Panel B: Resistant source 2 (Independent segregation)

Validation of molecular markers for clubroot resistance genes on A3 in canola

- ❖ DNA of breeding materials from Monsanto were analyzed with the molecular markers on N3
- ❖ The molecular markers perfectly matched with phenotypes that were derived from one clubroot resistant source
- ❖ No match with phenotypes of the progeny derived from another resistant source
- The resistance genes in Monsanto's breeding materials are diverse
- ❖ Gene pyramiding can be performed with two different resistant sources
- Canola cultivars with multiple clubroot resistance gene loci will be developed soon in Monsanto

Testing of ECD accession with a Canadian isolate*

Line code	0	1	2	3	
ECD-01	35	2	2	0	Resistant
ECD-02	52	3	4	0	Resistant
ECD-03	39	0	0	0	Resistant
ECD-04	43	0	0	0	Resistant
ECD-05	0	2	2	43	Susceptible
ECD-06	4	0	2	35	Susceptible
ECD-07	0	2	2	29	Susceptible
ECD-08	2	0	1	29	Susceptible
ECD-09	9	3	3	21	Susceptible
ECD-10	24	0	0	4	Resistant
ECD-11	41	0	0	0	Resistant
ECD-12	22	0	0	0	Resistant
ECD-13	12	0	6	0	Resistant
ECD-14	0	2	2	16	Susceptible
ECD-15	18	2	4	4	Resistant
CK	0	0	0	280	Susceptible

^{*}Clubroot ratings: 0, strong resistant and no gall; 1, susceptible with small galls on secondary roots; 2, susceptible with small galls on all roots; 3, totally susceptible with big galls on all roots.

Mapping populations for ECD materials

- ❖ ECD1, 2, 3, 4 and 10 were used to develop mapping populations.
- ❖ Segregating populations for ECD1, 2, 3, and 4 are being phenotyped
- Candidate genes on different chromosomes are being developed.
- ❖ All clubroot resistant *B. rapa* and *B. oleracea* were used to obtain synthetic *B. napus*.
- Mapping populations are being developed with synthetic B. napus.

Acknowledgement

Drs. Feng Gao, Arvind Hirani, Zheng Liu, Peter B.E. McVetty at UM Chunren Wu and Jun Liu at Monsanto

Financial Support Canola Council of Canada and AAFC