

Developing spring type *Brassica napus* lines containing single clubroot resistance genes

Fengqun Yu Plant Pathology, Saskaton Research and Development Centre, AAFC

> International Clubroot Workshop August 7-9, 2018, Edmonton

Major clubroot differential systems - pathotypes

- 1. Williams, 1966: 2 cabbages (*B. oleracea*) and 2 rutabaga including ECD10 (*B. napus*)
- 2. Buczacki, et al 1975: 5 lines of *B. rapa* (ECD01 to ECD05), 5 lines of *B. napus* (ECD06-ECD10) and 5 lines of *B. oleracea* (ECD11-ECD15)
- 3. Some et al, 1996: 7 lines of *B. napus* including ECD06, ECD07-ECD10 and 2 lines of *B. oleracea* (ECD11 and ECD13)
- 4. Strelkov et al, 2018: 2 lines of *B. rapa* (ECD02, ECD05), 9 lines of *B. napus* including ECD06, ECD07-ECD10 and 2 lines of *B. oleracea* (ECD11 and ECD13)

Drawbacks on the differential systems for canola in Canada

- Most of the lines are vegetable or fodder Brassica crops.
- Vernalization is needed.
- They cannot grow well in canola fields in western Canada.
- Inheritance for resistance to clubroot in most of the resistant lines is not clear.

Spring type *Brassica napus* near isogenic lines

- A set of near-isogenic spring canola lines containing single clubroot resistance genes would be the best differential lines.
- We proposed developing near isogenic in 2013 and the project was initiated in April 1, 2014.
- Applications in clubroot management
 - Differentiate races of *P. brassicae*
 - Monitor changes in race structure of the pathogen population in canola fields
 - Canola germplasm for resistance to clubroot
- What did we need?
 - Identified and mapped clubroot resistance (CR) genes
 - Isolates or strains that can differentiate each CR gene
 - Molecular markers for selection

Identified and mapped CR genes in B. rapa by 2013

Piao, 2014

Collecting materials for the project

Donor-R gene	Туре	Provider	Isolates
Siloga - <i>Crr1, Crr</i> 2 and <i>Crr4</i>	Turnip	Centre for Genetic Resources, the Netherlands	Not available
Milan White-Crr3	Turnip	Italian Seed and Tool, USA	Not available
ECD02-CRa	Turnip	University of Warwick, UK	Not available
ECD01-CRb	Turnip	University of Warwick, UK	Not available
Debra-CRc and CRk	Turnip Pak	Centre for Genetic Resources, the Netherlands	Not available
Flower Nabana- Rcr1	choy	Evergreen Y.H. Enterprises, USA	Dr. Strelkov

Except Rcr1, no SNP markers were available when the project was initiated.

Challenges on developing near isogenic lines

Developing canola isogenic lines for clubroot is much more difficult than developing the lines for blackleg.

- Interspecific crosses
- Vernalization needed (4-6 months)
- No differential isolates
- No molecular markers available for most of the CR genes

Breeding method

Identifying and genotyping SNP

R and S bulks

 23 SNP markers were tightly associated with resistance to pathotype 3H with *Rcr3* on A03 in 240 BC₁ plants R

24353280 AGCTTACCAC AGCTTACCAC AGCTTACCAC AGCTTACCAC AGCTTACCAC AGCTTACCAC AGCTTACCAC AGCTTACCAC AGCTTACCAC

AGCTTACCA AGCTTACC**T** AGCTTACC**T**

24353290 24353300	24353280 24353290 2435330
CAAC TTOTAACTTOCCA	COTTACOPCOARC
CARGE TTOTAL TOUCA	GCTTACCT GCAAG
CAAD TTTTTTTA ACCTOCCA	COTTACCIOCANO
CAAG <mark>H</mark> IIIGIAAUUIUUA	GUIIAUUTGUAAG
CAAG <mark>M</mark> TTTGTAACCTCCCA	GCTTACCTGCAAGUCT
CAAG <mark>IC</mark> TTGTAAC T TCCCA	GCTTACC T GCAAG <mark>BC</mark> TT
CAAGOTTTGTAACCTCCCA	GCTTACCTGCAAGUCTT
CAAG <mark>A</mark> TTTGTAACCTCCCA	GCTTACCTGCAAGCTT
CAAG <mark>ICTTGTAACT</mark> TCCCA	GCTTACC T GCAAG <mark>BC</mark> TTG
CAAG <mark>ICTTGTAACT</mark> TCCCA	GCTTACC T GCAAG <mark>BCA</mark> TG
CAAG <mark>OTTTGTAACCTCCCA</mark>	GCTTACC T GCAAG <mark>BC</mark> TTG
CAAG <mark>ICTTGTAACT</mark> TCCCA	GCTTACC T GCAAG C TTGTAAC T TC
CAAGICTTGTAACTTCCCA	GCTTACC T GCAAG IC TTGTAAC T TCCC
CAAC TTTCTAACCTCCCA	GOTTACOT GOALGO CTTOTALOTTCCC

S

Discovery of polymorphic variants (SNP and InDel)

Kompetitive Allele-Specific PCR (KASP)

Introgression of Rcr1 gene into canola

Analysis of A-genome markers genomewide SNP marker analysis using 6K Illumina SNP assay

Number of markers from the CR donor FN

- A total of 77 CR BC1 plants
- 198 polymorphic robust markers almost evenly distributed on A-genome chromosomes
- Theoretical distribution (TD): binomial; parameters
 N = 198 and P = 50%
- Actual distributions (AD)

Analysis of C-genome markers

Number of C genome chromsomes

- Theoretical distribution (TD): binomial; parameters N = 9 and P = 50%; average = 4.5
- Actual distributions (AD): More plants with 6 to 9 C-genome chromosomes; average = 6.1
- High frequency of C-genome transmission

Evaluation of resistance to pathotype 3 in the *B. napus* lines of DH16516 x *B.rapa* FN (*Rcr1*)

Lines	Generation	Total	R	S
DH16516	<i>B. napu</i> s recipient	17	0	17
FN	Rcr1 B.rapa donor	7	7	0
BC2FN		16	10	6
BC2S2FN-1	BC2S2	16	16	0
BC2S2FN-2	BC2S2	12	12	0
BC2S2FN-3	BC2S2	12	12	0
BC2S2FN-4	BC2S2	13	13	0
BC3FN-3	BC3	24	9	12
BC4FN-1	BC4	34	17	17
BC4S1FN	BC4S1	32	23	9

Canola quality plants carrying *Rcr1* and morphologically similar to DH16516

Total glucosinolates (umol/g) in meal

Progress on developing spring type *B. napus* carrying single CR genes

Donor Line	CR gene	Chr	Generation	No. of DH plants developed
Turnip Milan White	Crr3	A03	BC3	embryos
ECD01	CRb	A03	BC3	50
ECD02	CRa	A03	BC3	100
Debra	CRc CRk	A02 A03	BC2/BC3	100 lines
Siloga	Crr1 Crr2 Crr4	A08 A01 A06	BC3	200

Selecting spring type DH plants containing single R genes

Increase seed each DH line

Test for resistance to different strains

Observe traits including days to flower

Confirm the presence of each CR gene with SNP markers

Identify additional genes

Selecting spring type DH plants containing single R genes from 'Debra' (59 out of 100 DH lines)

R to		
pathotypes	3	5X
R	32	28
S	27	31
<i>P</i> (1:1)	0.515	0.696

Single genes control resistance to pathotypes 3 and 5X respectively

Which genes are there in the DH lines from 'Debra' ?

Debra	CRc	A02	
Dobra	CRk?	A03	
Phenotyp	e (3, 5X)	No. of lin	es
R, R		23	
R, S		9	
S, R		5	
S, S		22	
P(1:1:1:1)		0.000753	6

- CR genes for resistance to pathotypes 3 and 5X are linked.
- ➤ Resistance to pathotype 3 may be controlled by *CRc* (A02).
- Resistance to pathotype 5x may be controlled by a second gene on chromosome A02 (*Rcr8?*).
- Confirming presence of the CR genes is in progress.

Days to flower comparing with the recipient *B. napus* line DH16516

DH lines

Line	2	ΕV	D gono	Days to flower	DF more or less than
Line	3	58	R gene	(DF)	DH10310
YDH98-026	R	S	CRc?	42	-3
YDH98-033	R	S		44	-1
YDH98-041	R	S		45	0
YDH98-009	R	S		45	0
YDH98-084	R	S		42	-3
YDH98-087	R	S		45	0
YDH98-051	R	S		45	0
YDH98-074	R	S		58	4
YDH98-100	R	S		50	-4
YDH98-019	S	R	Rcr8?	55	10
YDH98-016	S	R		45	0
YDH98-055	S	R		48	3
YDH98-058	S	R		45	0
YDH98-047	S	R		54	0
DHT	S	S		45	
DHT	S	S	and the second second second	54	
Debra	R	R			
Debra	R	R	a Robinston		

Selecting DH lines containing single CR genes

How many CR genes are there in *B. rapa*?

					R to	
CR gene/QT	L Species	Туре	Cultivar	Chr	pathotype	Markers
Rcr1	B. rapa	Pak choy	Flower Nabana	A03	2, 3, 5, 8	SSR, SNP
Rcr2	B. rapa	Chinese cabbage	Jazz	A03	2, 3, 5, 8	SNP
Rcr3	B. rapa	Oilseed rape	96-6990	A08	3	SNP
Rcr4	B. rapa	Oilseed rape	T19	A03	2, 3, 5, 6, 8	SNP
Rcr5	B. rapa	Turnip	PTWG	A03	3	SNP
Rcr6 /Rcr6'	B. nigra	Black mustard	PI /CR2716	B3	3 <i>,</i> 5X	SNP
Rcr7	B.oleracea	Cabbage	Tekila	C7	3, 5X	SNP
Rcr8	B. rapa	Oilseed rape	Т19	A02	5X	SNP
Rcr9	B. rapa	Oilseed rape	Т19	A08	5X	SNP
Rcr9'	B. rapa	Oilseed rape	96-6990	A08	5X	SNP

Identified CR genes in diploid species of Brassica

		Single R gene in
R gene	Chr	DH16516
Cr/2	A01	under development
CRC	A02	yes
Rcr8	A02	yes?
CRa/CRb_Kato/Rcr1/Rcr2/Rcr4/RcrM?	A03	yes
Ckr3/CRk?	A03	under development
CRb/Rcr5?	A03	under development
CRd	A03	Not started
Crr4	A06	?
Rcr3	A08	under development
Crr1	A08	under development
RCr9/Rcr9'?	A08	under development
Ror6 /Rcr6'?	B3	under development
Rcr7	C7	under development

Spring type *B. napus* lines containing each of 8 genes becomes available in two years (2⁸=256).

Very informative differential set: 2¹⁰=1024; 2¹¹=2048; 2¹²=4096; 2¹³=4192

Acknowledgements

Dr. Yan Zhang
Jinghe Wang
Melissa Kehler
Dr. Mingguang Chu

<u>Collaborators</u> Dr. Gary Peng Dr. Bruce Gossen Dr. Stephen Strelkov Dr. Sheau-Fang Hwang

Saskatchewan Development Fund Saskcanola Western Grains Research Foundation

Special thanks go to Dr. Satoru Matsumoto

Thank you for your attention!