

In-field distribution of *Plasmodiophora brassicae* inoculum and its relationship to soil pH, Ca and B

A. Botero-Ramírez, S.F. Hwang and S.E. Strelkov

Introduction

- Epidemiological studies on the spatial patterns of *P. brassicae* inoculum are scarce
 - May be useful for the design and implementation of improved clubroot management strategies
- **Objective:** to assess the relationship between pathogen spatial patterns and soil chemical characteristics

Introduction

Clubroot levels are affected by many environmental factors

Is there any relationship between these factors and *P. brassicae* inoculum density in soil?

Sampling and Field Locations

Four fields (F1 – F4) sampled in Central Alberta

Sampling strategy

2017

- Regular grid 80m×80m
 - F1= 99 samples
 - F2= 97 samples
 - F3= 100 samples
 - F4= 100 samples

2019

- Intensification of sampling around positive samples for *P. brassicae* in F1, F2 & F3
 - F1=89 Samples
 - F2= 81 Samples
 - F3= 76 Samples
 - F4 =100 Samples

Soil samples 500 g \rightarrow 15 cm depth

Inoculum quantification

- q-PCR analysis
- All samples (2017 & 2019)

рΗ

- 1:1 (water: soil soln.)
- All samples (2017 & 2019)

Quantification of available Ca, Mg, B and Na

- Available Ca, Mg and Na by ammonium acetate extraction
- Available B by hot water extraction
- 50 samples (2017)

Spatial Analysis

- Evaluation of spatial autocorrelation and clustering
 - Moran's I and Variograms
- Spatial models using Stochastic Partial Differential equations
 - Continuous spatial processes using a Matérn covariance function
 - Bayesian methods using INLA (Integrated Nested Laplace Approximation)
 - Takes into account uncertainty in predictors
 - Allows for misalignment in response variables and covariates (Joint models)
 - Modelling of zero-inflated datasets

Results: Inoculum Density

Distribution

Range (m)	F1	F2	F3	F4]
2017	<80	346.1	<80	113.6	Average patch
2019	289.3	585.9	77.8	422.9	7209 m
∆Range	~250	239.8	~37.7	309.3	

Max inoculum density

- 2017 \rightarrow 1.4 × 10⁵ resting spores/g soil
- 2019 \rightarrow 2.7 \times 10⁵ resting spores/g soil

Positive samples

- 2017→ 1 of 99
- 2019→ 13 of 85

Modelling soil variables and inoculum

- 2017→Not possible to define relationship
- 2019 \rightarrow No important relationship between inoculum density and pH, Ca^{2+} or B^{3+}

	Moran's I	p-value	Expected value	Conclusion
2017	-0.008	0.2855	-0.01	No spatial
2019	-0.020	0.5821	-0.011	autocorrelation

Does not mean randomness \rightarrow Spatial patterns may be explained by random spatial processes

Year	Range (m)		
2017	<80		
2019	289.3		
∆Range	~250		

Max inoculum density

- 2017 \rightarrow 1.7 \times 10⁷ resting spores/g soil
- 2019 \rightarrow 9.9 \times 10⁶ resting spores/g soil
- Positive samples
 - 2017→ 23 of 97
 - 2019→ 38 of 81
- Modelling soil variables and inoculum
 - No important relationship between inoculum density and pH, Ca^{2+} or B^{3+}

	Moran's I	p-value	Expected value	Conclusion		
2017	0.042	0.0225	-0.01	Clustering		
2019	0.168	0.007	-0.125			

Year	Range (m)		
2017	346.1		
2019	585.9		
∆Range	239.8		

Max inoculum density

- 2017 \rightarrow 1.7 \times 10³ resting spores/g soil
- 2019 \rightarrow 1.7 \times 10⁵ resting spores/g soil
- Positive samples
 - 2017→ 1 of 100
 - 2019→ 8 of 76
- Modelling soil variables and inoculum
 - 2017→Not possible to define relationship
 - 2019 \rightarrow No important relationship between inoculum density and pH, Ca^{2+} or B^{3+}

	2	017	•••	• •		2019		Moran's I	p-value	Expected value	Conclusion		
							2017	-0.006	0.112	-0.01	No spatial autocorrelation		
		•••	•	•			2019	0.036	0.005	-0.013	Clustering		
Road	• • • •	•••		• •	Road	•							
	• • • •	• •	• •	•				Year		Range (m)			
ľ	••••	• •	•					2017		<80			
•		÷ .	•			· • •		2019		77.8			
•		• •	•	• •				∆Range	2	~37.7			
	Hig	hway	•	•••		Highway							

- Max inoculum density
 - 2017 \rightarrow 1 × 10⁵ resting spores/g soil
 - 2019 \rightarrow 3.2 × 10⁷ resting spores/g soil
 - Positive samples
 - 2017→ 28 of 100
 - 2019→ 47 of 100
- Modelling soil variables and inoculum
 - No important relationship between inoculum density and pH, Ca^{2+} or B^{3+}

Conclusions

- P. brassicae inoculum
 - Patchy distribution \rightarrow Patch sizes ranged from ~40 m up to ~586 m

 \rightarrow Average patch growth = 209 m in two years

- Increase in patch size related to > inoculum density and > number of positive samples
- No effect of pH, Ca^{2+} or B^{3+} on the pathogen inoculum density was observed in any of the fields
- Observed spatial patterns may be explained by random spatial processes

Acknowledgements

- Canola Council of Canada & the Grower Groups for Financial Support
 - Alberta Canola, SaskCanola, Manitoba Canola Growers
- Grower and industry collaborators
- Victor Manolii & staff in the Plant Pathology Lab
- University of Alberta and Alberta Agriculture & Forestry for in-kind support