

Resistant sources and resources for clubroot at AAFC, Saskatoon

Fengqun Yu

April 30, 2020

Resistance to clubroot in *Brassica* species

Identifying sources of resistance at AAFC

•P. brassicae pathotype 3

Peng G, K.C. Falk et al 2014. Can J Plant Pathol, 36: 89-99. •P. brassicae pathotype 5X

Yu F et al, unpublished data

Selected *B. napus* lines tested for pathotypes 3A, 2B and 3D

- > 162 out of 845 *B. napus* lines were tested.
- Lines resistant to clubroot (0 DSI) were identified:
 - ➤ 3 resistant to all of the 4 pathotypes
 - ➤ 17 lines resistant to 1-3 pathotypes

	2B	3D	5X-LG2
3A	0.77	0.50	0.31
2B		0.43	0.31
3D			0.29

Nine *B. napus* lines were tested for resistance to more pathotypes

	2B	3A	3D	3H	30	5C	5G	5K	5L	5X	8E	8J	8P
DH16516	S	S	S	S	S	S	S	S	S	S	S	S	S
Westar	S	S	S	S	S	S	S	S	S	S	S	S	S
AAFC682	S	S	S	S	S	R	R	R	S	R	S	R	R
AAFC693	R	S	S	S	S	R	R	R	S	R	S	R	S
AAFC694	S	S	S	S	S	R	R	R	S	R	S	R	S
AAFC787	S	S	S	S	S	S	R	R	S	R	S	R	S
AAFC692	S	R	R	R	S	R	R	R	R	R	R	R	R
AAFC405	S	R	R	R	S	R	S	S	R	R	R	R	R
AAFC660	R	R	R	R	R	R	R	R	R	R	R	R	R
AAF 665	R	R	R	R	R	R	R	R	R	R	R	R	R
AAFC695	R	R	R	R	R	R	R	R	R	R	R	R	R

> Three *B. napus* lines resistant to all of the pathotypes were identified.

Introgression of clubroot resistance from turnip into canola

B. rapa

Triploid

BC1

BC2

BC3

Microspore culture for developing doubled haploid (DH) B. napus

Developing DH *B. napus* lines carrying CR genes from turnip

Donor Line	CR gene	Chr	Generation	No. of DH lines developed
Turnip Milan White	Crr3	A03	BC3	150
ECD01	CRb	A03	BC3	100
ECD02	CRa	A03	BC3	150
Debra	CRc CRk	A02 A03	BC2/BC3	190
	Crr1	A08		
Siloga	Crr2	A01	BC3	320
	Crr4	A06		

- \succ Seed from > 800 DH lines was obtained.
- > No vernalization is needed for all of the DH plants.
- Confirmation on the presence of each CR gene and identification of novel genes are in progress.

Segregating for resistance and susceptibility in a DH pupation consisting of 84 DH lines from BC2 of DH16516 x Debra

	Pathoty	Average			Expected		No. of genes
Tested by	pes	DSI	R	S	ratio	Р	predicted
	-						•
Stephen's		00.7					
group	30	28.7	56	28	3:1	0.078	2
U I	5C	29.3	58	26	3:1	0.208	2
	5G	28.7	57	27	3:1	0.131	2
	5L	28.3	58	26	3:1	0.208	2
	5K	31.2	52	32	3:1	0.078	2
	8J	28.9	58	26	3:1	0.208	2
	3H_A	26.8	61	23	3:1	0.614	2
Fengqun's		24.0					
group	3H	34.2	51	33	1:1	0.050	1
	5X	38.7	49	35	1:1	0.127	1
	3D	34.5	48	36	1:1	0.190	1
	8E	47.4	37	47	1:1	0.275	1
	2B	54.3	25	59	1:3	0.313	2
	3A	55.6	27	57	1:3	0.131	2

Relationship of resistance to different phenotypes among 84 DH lines

Re-synthesizing *Brassica napus* with clubroot resistance from C-genome

Yu F et al. 2017. Scientific Reports

B. rapa	B. oleracea
	ECD11
T19 (Rcr4, Rcr8 and Rcr9)	
	JL04

Evaluation of the re-synthesized *B. napus* lines from T19 x ECD11 for resistance to clubroot

Generation	Line name	3A_DSI(%)	8J_DSI(%)
F3	Re-10-4	41.0	0.0
F3	Re-11A-5	0.0	0.0
F1	DHT x Re-4-17	97.2	0.0
F1	DHT x Re-10-4	100.0	15.8
F1	DHT x Re-11A-5	100.0	0.0
S-control	DHT	100.0	100.0
R-control	45H29	100.0	88.9

Summary on sources and resources for resistance Canadian pathotypes

- Sources of resistance: vegetables (*B. rapa, B. olerace* and *B. napus*) and mustard (*B. nigra*)
- More than 30 lines with good resistance were identified from the species at AAFC, Saskatoon.
- Resources were developed by introgression of resistance from some of the sources into canola/ *B. napus*.
- Genetic resources including SNP markers developed at AAFC have been / will be distributed to canola breeders for developing cultivars for resistance to clubroot.

Acknowledgements

Dr. Yan Zhang Jinghe Wang

Dr. Md. Masud Karim Melissa Kehler

Dr. Dakouri, Abdulsalam

Collaborators

Dr. Gary Peng Dr. Bruce Gossen

Dr. Stephen Strelkov Dr. Sheau-Fang Hwang

Funding

Alberta Innovates Canola Coucil of Canada Saskatchewan Development Fund Saskcanola Western Grains Research Foundation