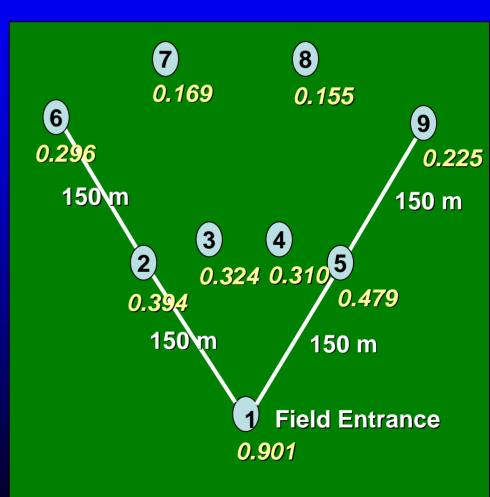

Seedborne Transmission of Clubroot of Crucifers

Research Team: <u>S.E. Strelkov</u>, R.J. Howard and S.F. Hwang Graduate Student: <u>D.C. Rennie</u>



Outline of Presentation

- Introduction and background
- Study objectives
- Detection of seed infestation levels, natural infestation of seeds and tubers
- Effects of seed cleaning
- Evaluation of seed treatments
- Conclusions

Clubroot Spread

- Soilborne pathogen
- Movement of infested soil
 - Machinery
 - Soil erosion and water run-off
- Possibility for transmission of resting spores as seedborne contaminants?

Frequency of infection

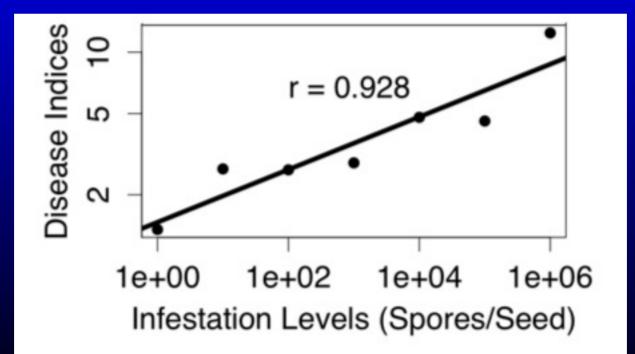
Seedborne Clubroot Transmission

- Many non-refereed fact-sheets & websites mention this possibility but provide no data
- Little information available in refereed literature
 - Warne (1943): introduction of clubroot to a garden on infested seeds
 - Hazra et al. (1998): presence of dried root fragments mixed with seeds
- Large gap in knowledge on this topic

Study Objectives

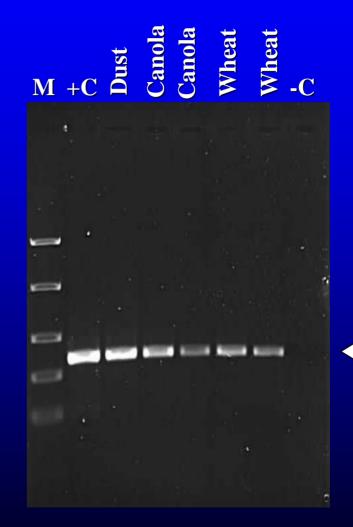
- Evaluate risk posed by seedborne transmission of clubroot
- Assess the efficacy of seed cleaning & treatments
- Develop recommendations for growers & industry

Support obtained from the CSGA, ACPC/ACIDF & industry partners; currently just past ½ way point of the research

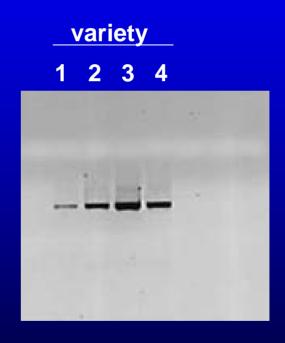

Detection of Seed Infestation Levels

- Could detect as little as one resting spore per canola seed
 - Artificially inoculated seedlots
- How many spores are needed to cause disease?

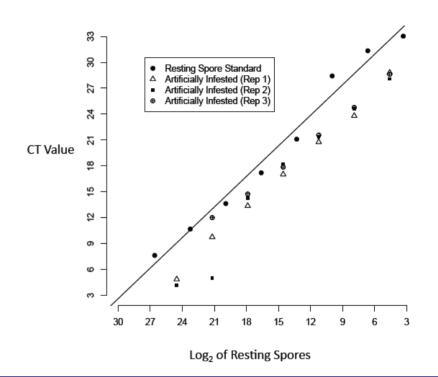
	No. resting spores per seed								
Μ	10 ⁶	10 ⁵	10 ⁴	10 ³	10 ²	10 ¹	1	0	С
-									
=									
		-							
=									_


Seed Infestation Level & Clubroot Severity

- Under greenhouse conditions, even trace levels of infestation could cause some clubroot
 - Optimal conditions for the pathogen

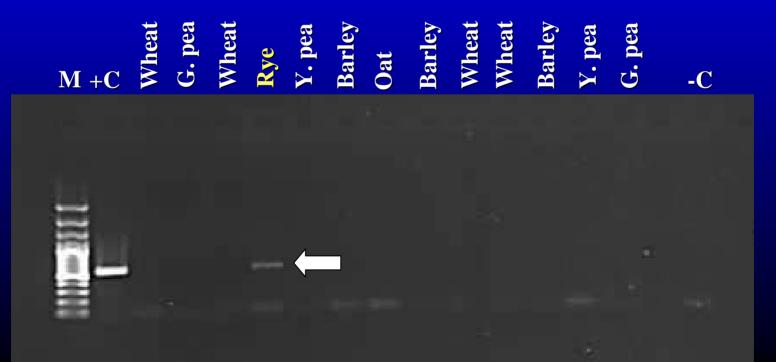

Evidence of Natural Seed Infestation

- Tested farmerharvested seeds of various crops for the presence of *P*. *brassicae* inoculum
- Found on canola, wheat, rye & barley
- What about potatoes?


Infestation on Potato Tubers

- Four varieties of potatoes grown in clubroot-infested field in southern Alberta
- Subjected to PCR testing
- Presence of P. brassicae DNA detected

Quantification of Inoculum Levels


- Developed quantitative PCR technique to quantify DNA levels and relationship to spore levels and clubroot severity
 - Validation through bioassays

Standard curve of average C_T values plotted against Log2 of serial dilution of spore DNA

Effect of Seed Cleaning

- Examined cleaned seeds of numerous crops
 - Seed cleaning plant in clubroot epicenter
 - No information on whether seedlots came from clubroot fields, or whether they were infested prior to cleaning

Naturally Infested Seeds

- Naturally infested seeds & detection of *P. brassicae* after seed cleaning suggest small risk of seedborne transmission
 - Secondary to movement on equipment
 - Role in dissemination to other regions? Fast dissemination of pathotypes?
- To further reduce any risk and allay concerns, seed treatments represent attractive option

Evaluation of Seed Treatments

- Fungicides commonly used as seed treatments
- Fungicide effective against *P. brassicae*, powdery scab

This research is currently underway

Dynasty	Seed & soilborne diseases
Prosper FX Prosper 400	Seed rot, damping-off, early root rot, seedling blights, seedborne diseases, insecticide
Vitavax RS	Seed rots, damping-off, seedling blights, early root rot
Helix Xtra	Seed & soilborne diseases, insecticide
Nebijin	Potato powdery scab, clubroot on Brassicas

Conclusions

- Seedborne transmission of clubroot is possible and could be a secondary mode of disease spread
- Low-levels of infestation enough to induce some disease
 - Conducive conditions probably required
- Seed cleaning may help reduce risk but not eliminate it completely
- Efficacy of seed treatments is being studied

Acknowledgments

- Canadian Seed Growers' Association
- Alberta Canola Producers Commission
- Alberta Crop Industry Development Fund
- EnCana, Harvest Energy Trust, Enerplus Resources Corporation
- V. Manolii, T. Cao, M. Hartman and D. Orchard