Lifecycle Analysis Canola Biodiesel

Don O'Connor (S&T)² Consultants Inc. Canola Research Summit Winnipeg, April 13, 2011

- Lifecycle Assessment
- GHGenius
- Canola Biodiesel
- Canadian Canola Biodiesel Strengths

Life Cycle Assessment

- Life Cycle Assessment (LCA) is a technique for assessing the potential environmental aspects associated with a product (or service), by:
 - compiling an inventory of relevant inputs and outputs,
 - evaluating the potential environmental impacts associated with those inputs and outputs, and
 - interpreting the results of the inventory and impact phases in relation to the objectives of the study.
 - Source: US EPA

What is LCA?

- LCA is a cradle to-grave approach for assessing industrial systems
- Begins with gathering the raw materials from the the earth and ends when the materials are returned to the earth
- Evaluates all of the stages as if they are interdependent
- Provides a comprehensive view of all environmental impacts and allows a more accurate assessment of environmental trade-offs

Benefits Of LCA

- Helps decision makers select options that provide the lowest environmental impact
 - This is used with other information such as cost and performance to select a product or process
- Companies can claim one product is better than another on the basis of LCA
- LCA inventory process helps to narrow in on the area where the biggest reductions in environmental emissions can be made
- Can be used to reduce production costs

Limitations of LCA

Can be time and resource intensive

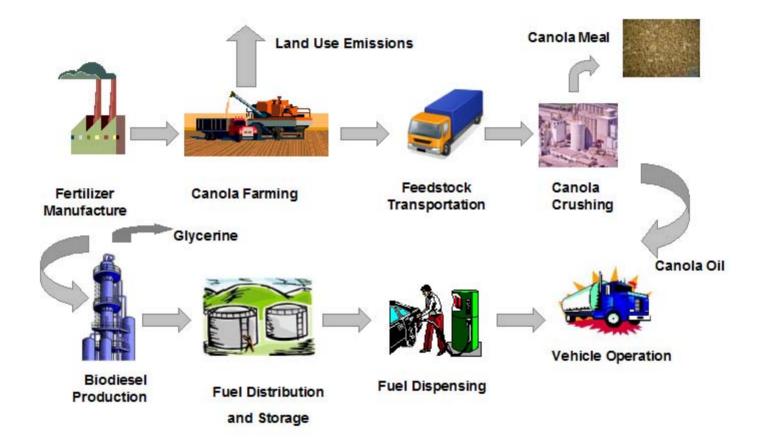
- Availability and accuracy of data can influence the results
- Most LCA's won't determine which product works the best or is the most cost effective
- LCA's need to be used as one component of the decision making process assessing the trade-offs with cost and performance

Life Cycle Assessment Principles

- The ISO 14040 standard for Life Cycle Assessment has seven principles:
 - 1. Life Cycle Perspective
 - 2. Environmental Focus
 - 3. Relative Approach and Functional Unit
 - 4. Iterative Approach
 - 5. Transparency
 - 6. Comprehensiveness
 - 7. Priority of Scientific Approach

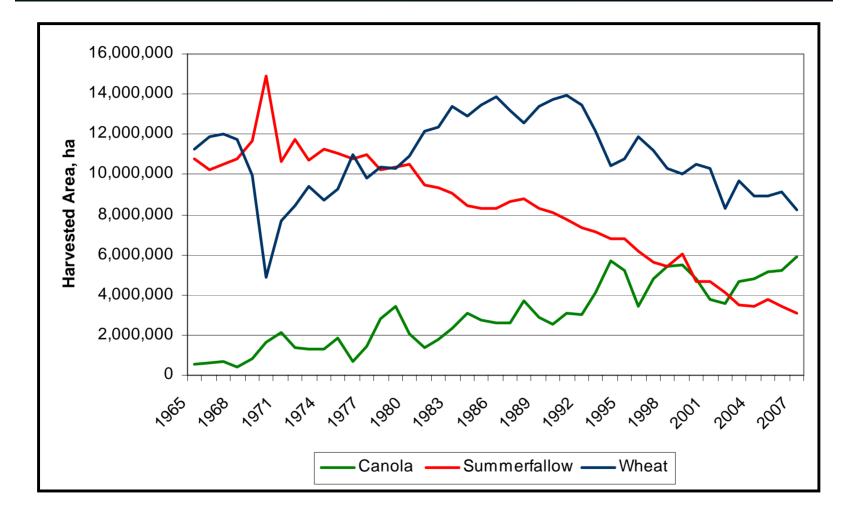
GHGenius Background

- Based on a Lotus 123 spreadsheet model developed by Dr. Mark Delucchi, University of California, Davis in the late 1980's for estimating transportation emissions
- In 1999, Levelton Engineering was asked by NRCan to use the model for the Transportation Table of the National Climate Change Process
- Since 1999 the model, now called GHGENIUS, has been used for studies for Agriculture and Agri-Food Canada, Natural Resources Canada, a number of the Provinces and some industries
- Many new pathways have been added so that there are now over 200 transportation fuel pathways in the model. Much more Canadian specific data in the model
- > An Excel version is now available with an updated guide

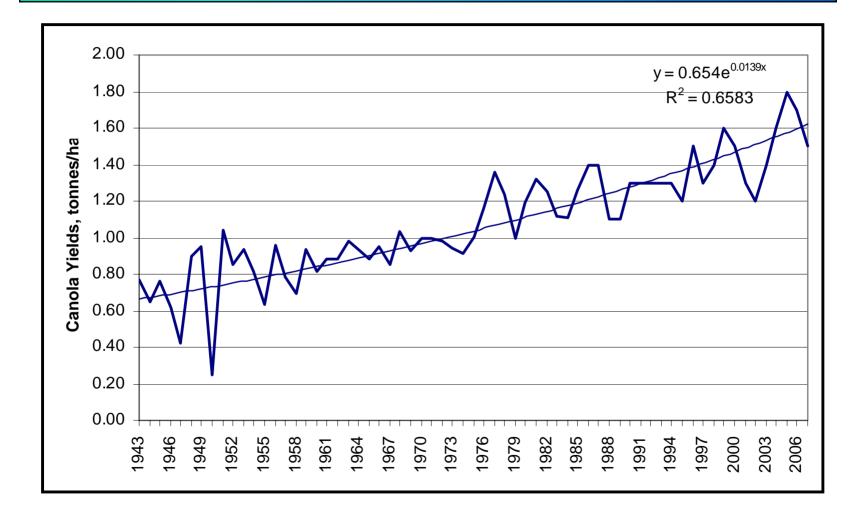


Why GHGENIUS?

- Follows an accepted LCA process
- Transportation specific but covers most energy sources and many materials manufacturing processes and land use changes
- Best Canadian database available
- Good American database
 - Allows comparison of Canadian and US applications of the same process
 - There are some significant differences in the industrial infrastructure between the countries
- Has some economic tools incorporated



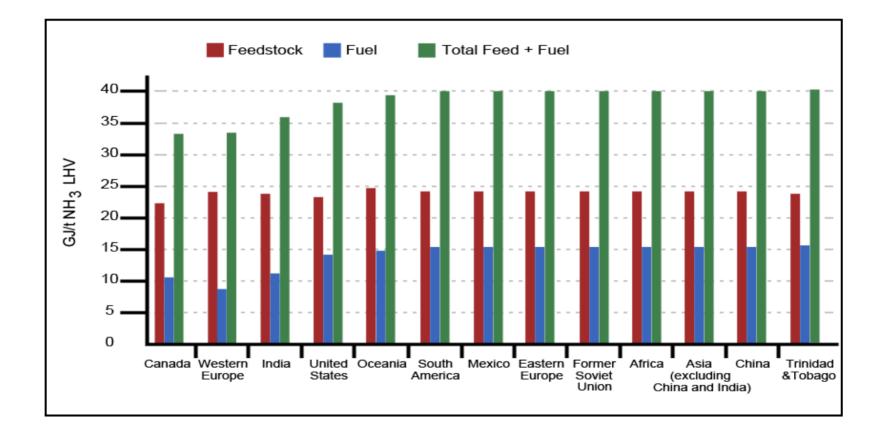
Canola Biodiesel



Land Use

(S&T)²

Canola Yield


Nitrogen Fertilizer Use

European rapeseed producers use ~50% ammonium nitrate fertilizer which has about twice the embedded GHG emissions of ammonia or urea.

	Nitrogen	1,000 tonnes	Nitrogen in	% by Nitrogen
	Content		fertilizer	
Ammonia	0.82	479	393	27.9%
Urea	0.46	1,664	765	54.3%
Ammonium Nitrate	0.34	0	0	0.0%
Ammonium Sulphate	0.20	507	101	7.2%
UAN	0.28	532	149	10.6%
Total		3,182	1,409	100.0%

Efficient Fertilizer Manufacturing

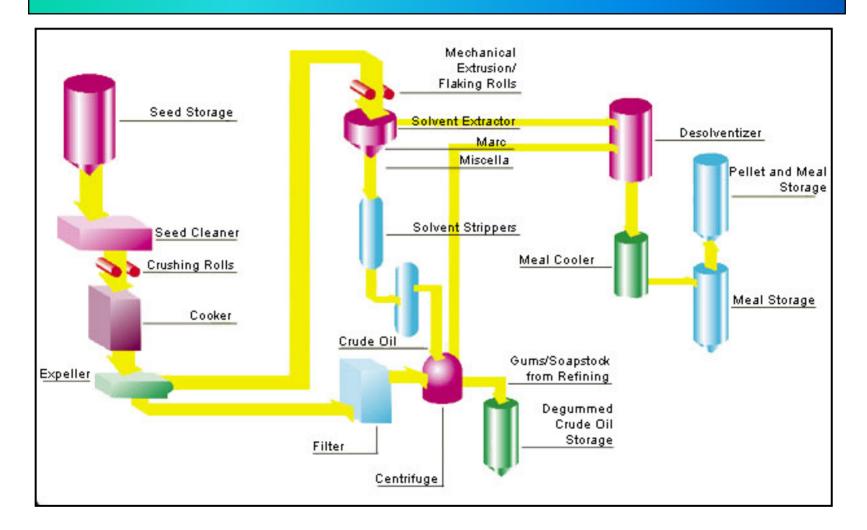
(S&T)²

Low N₂O Emissions

	Minimum	Maximum	Average	
	Kg N ₂ O-N/kgN applied			
Atlantic	0.0128	0.0168	0.0161	
Quebec	0.0147	0.0167	0.0160	
Ontario	0.0098	0.0166	0.0139	
Manitoba	0.0065	0.0142	0.0105	
Saskatchewan	0.0021	0.0101	0.0067	
Alberta	0.0045	0.0099	0.0075	
BC	0.0047	0.0113	0.0081	
Canada	0.0076	0.0120	0.0100	
Canada East	0.0128	0.0168	0.0161	
Canada Central	0.0117	0.0166	0.0147	
Canada West	0.0037	0.0106	0.0076	

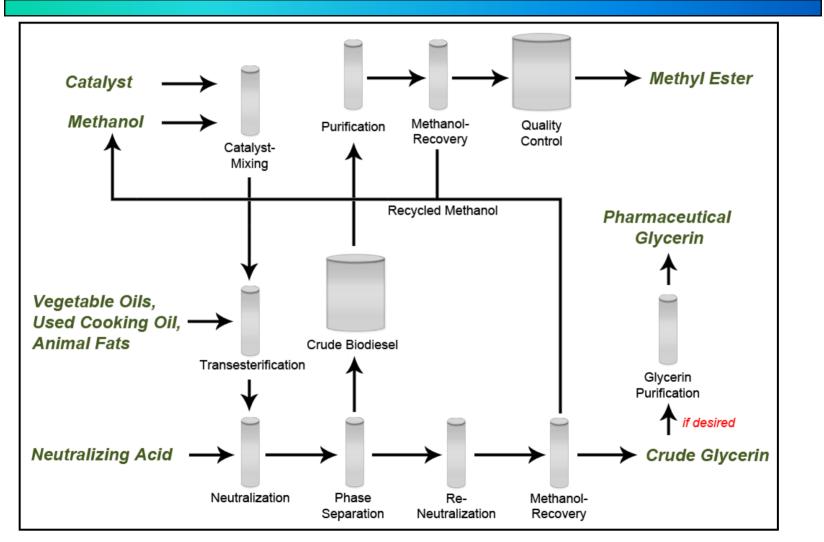
Leading Tillage Practices

	Seeded Area	Full Tillage	Conservation	No Tillage
			Tillage	
	hectares			
Manitoba	3,890,618	1,689,335	1,371,380	829,903
Saskatchewan	13,348,192	2,443,085	2,876,161	8,028,946
Alberta	7,578,201	1,877,391	2,098,535	3,622,274
Total	24,817,011	6,009,811	6,346,076	12,481,123
% of seeded acres		24.2	25.6	50.3



Building Soil Carbon

	Atlantic	Central	Parkland	Semi-arid Prairies	West
	kg C/ha/year				
Intensive till to no-till	60	100	140	100	50
Intensive till to reduced till	50	40	50	40	0
Reduced till to no till	0	60	70	50	40
Decrease fallow	300	300	300	300	300
Increase perennial	770	740	550	560	460



Canola Crushing

Biodiesel Manufacturing

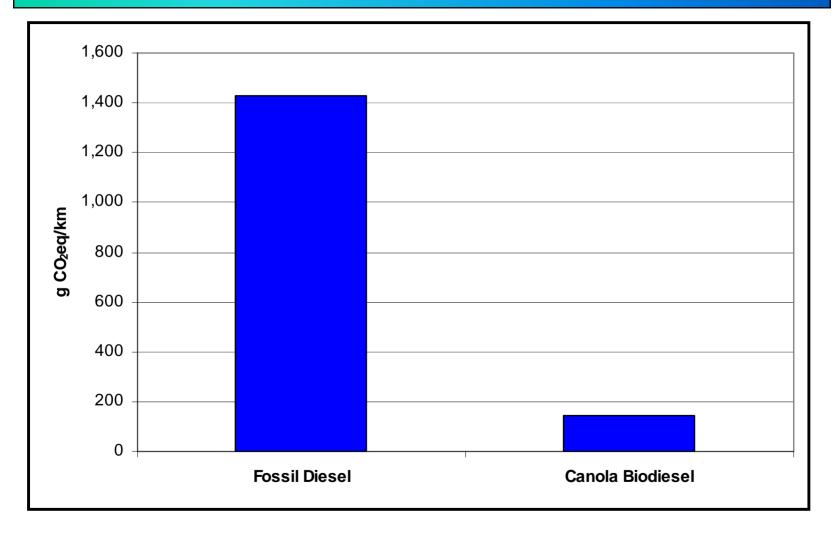
(S&T)²

Energy Balance

Fuel	Hwy diesel	Biodiesel	
Feedstock	Crude oil	Canola	
	Joules consumed/Joule Delivered		
Fuel dispensing	0.0024	0.0027	
Fuel distribution, storage	0.0069	0.0153	
Fuel production	0.1168	0.1363	
Feedstock transmission	0.0117	0.0126	
Feedstock recovery	0.1182	0.0722	
Ag. chemical manufacture	0.0000	0.1643	
Co-product credits	-0.0011	-0.1779	
Total	0.2549	0.2255	
Net Energy Ratio (J delivered/J consumed)	3.9231	4.4345	

Upstream GHG Emissions

Fuel	Hwy diesel	Biodiesel
Feedstock	Oil	Canola
	g CO ₂ eq/GJ (HHV)	
Fuel dispensing	114	131
Fuel distribution and storage	476	1,187
Fuel production	8,432	7,231
Feedstock transmission	905	976
Feedstock recovery	8,626	6,276
Land-use changes, cultivation	266	6,321
Fertilizer manufacture	0	10,116
Gas leaks and flares	1,855	0
CO ₂ , H ₂ S removed from NG	0	0
Emissions displaced	-230	-27,172
Total	20,444	5,065



Lifecycle GHG Emissions

General fuel	Petrol diesel	Biodiesel	
Fuel specification	0.0015% S	Canola B100	
Feedstock	Crude oil	Canola	
	g CO ₂ eq/km		
Vehicle operation	1,078.3	1,108.3	
C in end-use fuel from CO ₂ in air	0.0	-1,081.7	
Net Vehicle Operation	1,078.3	26.7	
Fuel dispensing	1.8	2.0	
Fuel storage and distribution	7.3	18.2	
Fuel production	129.4	111.0	
Feedstock transport	13.9	15.0	
Feedstock recovery	132.4	96.4	
Land-use changes, cultivation	4.1	97.1	
Fertilizer manufacture	0.0	155.3	
Gas leaks and flares	28.5	0.0	
CO ₂ , H ₂ S removed from NG	0.0	0.0	
Emissions displaced by co-products	-3.5	-417.2	
Sub total (fuel cycle)	1,392.0	104.4	
% changes (fuel cycle)		-92.5	
Vehicle assembly and transport	5.5	5.5	
Materials in vehicles	31.3	31.3	
Grand total	1,428.7	141.2	
% changes (grand total)		-90.1	

Lifecycle GHG Emissions

Canadian Canola Biodiesel Advantages

- The energy efficient production methods employed by Canadian producers, including high adoption rates of no till and conservation tillage practices.
- The use of ammonium type fertilizers rather than nitrate fertilizers, with their lower GHG emissions profile.
- Low N₂O emissions in the primary canola production areas due to the low annual precipitation.
- The production on alkaline soils and thus avoiding the need for soil pH adjustment through the addition of lime.

Questions

and

Discussion

Thank You

