

Overview of the clubroot incidence and variation in the pathotypes of Plasmodiophora brassicae populations in Europe

N. Zamani-Noor; A.-C. Wallenhammar;
G. Cordsen-Nielsen; G. Orgeur; V. Konradyová; F. Burnett; F. Dussart;
J. Smith; M. Korbas and M. Jedryczka

a registered resistant cultivar

Clubroot (Plasmodiophora brassicae)

Current reports stated the frequent outbreaks of clubroot in districts growing OSR crops in recent years

Reasons for increasing occurrence of the disease

- Increasing in oilseed rape cultivation area
- Relatively short crop rotation
- Propagation of the pathogen in volunteer OSR and weeds after harvest in clubroot infested fields
- Favourable weather and soil conditions for the infection

Monitoring of clubroot pathotypes

Plasmodiophora brassicae

\checkmark A field collection is frequently a mixture of separate populations with different pathogenicity each capable of differential interaction (Honig, 1931) (Pathotype: Any of a group of organisms (of the same species) that have the same pathogenicity on a specified host)
\checkmark Numerous sets of differential hosts have been proposed for the assessment of virulence in the pathogen

Differential Brassica P. brassicae pathotypes

Differential Nr. Differential cultivar/line

	Brassica rapa
ECD 01	subsp. rapifera line aaBBCC
ECD 02	subsp. rapifera line AAbbCC
ECD 03	subsp. rapiferaline AABBcc
ECD 04	subsp. rapifera line AABBCC
ECD 05	var. pekinensis cv. Granaat
	Brassica napus
ECD 06	var. napus cv. Nevin
ECD 07	var. napus cv. Giant Rape
ECD 08	var. napus selection ex. 'Giant Rape'
ECD 09	var. napus New Zealand clubroot resistant rape
ECD 10	var. napobrassica cv. Wilhemsburger
	Brassica oleracea
ECD 11	var. capitata cv. Badger Shipper
ECD 12	var. capitata cv. Bindsachsener
ECD 13	var. capitata cv. Jersey Queen
ECD 14	var. capitata cv. Septa
ECD 15	var. acephala subvar. laciniata cv. Verheul
	Brassica napus var. napobrassica (Laurentian)
-	Brassica napus cv. Brutor (spring oilseed rape)
-	Brassica napus cv. Mendel

- Differentials of Williams (1966)

4 cultivars: 32 combinations

■ European Clubroot Differential (ECD)
Buczacki et al. (1975)
15 cultivars: 32,768 combinations

- Differentials series of Somé (1996) 3 cultivars: 8 combinations

To check the degree of virulence of the collected isolates

Mendel: $1^{\text {st }}$ clubroot-resistant OSR

a race-specific clubroot resistance
B. rapa ECD-04 x B. oleracea ECD-15

Monitoring of clubroot pathotypes in some of European countries

Germany

Nazanin Zamani Noor
(Julius Kuehn-Institute, Institute for Plant Protection in Field Crops and Grassland)

Cultivated area in 1000 ha

- Increasing in oilseed rape cultivation area in Germany up to 1.5 million ha
- The frequent outbreaks of clubroot in districts growing OSR crops

Monitoring of clubroot pathotypes in Germany

Name and address of the sender	
Name, First name:	
Institution:	
Address:	
Telephone:	
E-Mail:	
Date of sampling:	
Information about the infected field	
Address, State:	
Farmer's name:	
GPS Data (Width, Length):	
Soil type:	
pH Value (checking at JKI):	
Plant host (cultivar):	
Field rotation regime:	
Disease incidence (\%)	
Pathotypeneinstufung	
ECD:	
INRA:	

- Since 2013 farmers, OSR breeders and agricultural consultants were asked to send galls and soil samples from first reported clubroot infected fields in different federal states of Germany
- Disease incidence was calculated from 50 plants randomly sampled in each clubroot-infected field. The roots were evaluated as healthy (without any swelling or gall formation) or infected
- Till date, in total, 110 infected samples were obtained from 12 German federal states

Crop Rotation in Germany

Within clubroot-infected fields clubroot disease incidence varied from 20\%-92\%

Year	Rotation regime
2	Winter wheat / Winter oilseed rape
3	Winter wheat / Winter wheat / Winter oilseed rape
	Winter wheat / Winter barley / Winter oilseed rape
	Sugar beet / Winter wheat / Winter oilseed rape / winter wheat
	Maize / Winter wheat / Winter oilseed rape / Winter wheat
	Winter oilseed rape / Maize / Winter triticale / Winter Barley

Frequency of OSR in the rotation was significantly correlated with the incidence and prevalence of clubroot disease

Relationship between soil pH and the disease incidence of clubroot-infected fields

Clubroot disease could occur over a wide range of soil pH from 5.1 to 8.3.

Acidic soils maybe most at risk

Within clubroot-infected fields:

- clubroot disease incidence varied from 20 \%-92 \%
- a negative correlation observed between soil pH and the disease incidence

Geographical distribution of P. brassicae pathotypes in Germany (2013-2017; n=85)

\square | P1 |
| :--- |
| P2 |
| P3 |
| P5 |

Mendel resistance-breaking pathotype

according to Somé et al. (1996)

- P1 and P3: the most widespread pathotypes among P. brassicae isolates
- 39% of all isolates showed high infestation on resistant cultivar ,Mendel'
according to ECD; Buczacki et al. (1975)
- 20 distinct virulence patterns were observed
- 12% of all isolates showed moderate to high disease severity on

ECD 01 to ECD 03

Poland

Małgorzata Jędryczka
(Institute of Plant Genetics, Polish Academy of Sciences, Poznań)

Cultivated area in 1000 ha

Poland is in $3^{\text {rd }}$ place in OSR production, after Germany and France ($\approx 880-920$ thous. ha)

$0,8 \mathrm{mln}$ ha of OSR in Poland 95\% of WOSR

 recent huge problems with clubroot

Symptoms of clubroot on WOSR in Poland, 2017

Clubroot in Polish soils

Over 3.500 samples was analyzed for bio assey

3,4\%

In most of the fields the soil pH is moderately (5.5-7) to extremely acidic (below 5.2)

Patotypes of Plasmodiophora brassicae in Poland

Newest data on patotypes of Plasmodiophora brassicae in Poland:
> based on Williams: 8 pathotypes (3, 4, 6, 7, 9, 10, 12, 16)
> based on Somé: 2 pathotypes (1,3)
> Based on Buczacki: 9 pathotypes

		pathotypes	Williams	Somé	Buczacki	soil pH	
1	Siemysl		4	P1	16/31/31	7.6	\longleftarrow Max.
2	Ramlewo		6	P3	16/7/28	6.7	
3	Karlin	West Pomerania	10	P1	16/31/31	5.8	
4	Tuczno	West Pomeran	9	P1	16/31/8	4.3	
5	Karsibor		4	P1	16/31/31	6.4	
6	Jablonowo		4	P1	16/31/31	7.3	
7	Bielnik	Warmia	7	P3	16/31/29	5.4	
8	Wegorzewo	\& Masuria	6	P3	16/14/12	6.9	
9	Wrzesiny	Lubusz Region	6	P3	16/14/30	7.6	
10	Krotoszyn	Great Poland	16	P1	16/31/8	5.9	
11	Lubań		12	P1	16/31/14	5.0	
12	Ocice		3	P3	16/2/14	6.2	
13	Bolkow	Lower Silesia	7	P3	16/14/15	6.8	
14	Dobromierz		7	P3	16/14/15	5.0	
15	Opole	Opole Region	6	P3	16/14/12	4.4	\longleftarrow Min.
16	Kiczyce	Upper Silesia	7	P3	16/14/15	6.8	

Several isolates were found that could overcome the resistance in cv. Mendel

Czeck Republic

Veronika Konradyová
(Department of Plant Protection, Czech University of Life

Sciences Prague)

Cultivated OSR area in 1000 ha

$2016 / 17$	Growing area (ha)	Average yield (t/ha) $)$	Harvest (t)
Winter OSR	392,991	3,32	1,56 mil.
Spring OSR	8,000	1,57	14000

Autumn 2017 - Holín

Patotypes of Plasmodiophora brassicae in Czeck Republic

Newest data on patotypes of Plasmodiophora brassicae in CZ:
> based on Williams: 6 pathotypes (2, 3, 4, 6, 7, 9)
> based on Somé: 3 pathotypes (1, 3, 4)
> Based on Buczacki: 9 pathotypes

Patotypes of P. brassicae				
Isolate	Locality	Williams	Somé	ECD
$\mathbf{1}$	Modlibohov	7	P 3	$16 / 14 / 31$
$\mathbf{2}$	Holany	7	P 3	$16 / 14 / 15$
$\mathbf{3}$	Bily Kostel	2	P 3	$16 / 14 / 13$
$\mathbf{4}$	Horka u Bakova	7	P 3	$16 / 14 / 15$
$\mathbf{5}$	Trebnouseves	7	P 3	$16 / 14 / 31$
$\mathbf{6}$	Miletin	2	P 3	$16 / 14 / 15$
$\mathbf{7}$	Kbelnice	6	P 3	$16 / 2 / 14$
$\mathbf{8}$	Zirovnice	3	P 3	$16 / 2 / 14$
$\mathbf{9}$	Horusice	4	P 4	$16 / 18 / 15$
$\mathbf{1 0}$	Hrdejovice Ves	6	P 3	$16 / 14 / 12$
$\mathbf{1 2}$	Pohledy	9	P 1	$16 / 31 / 8$
$\mathbf{1 3}$	Kozmice	7	P 3	$16 / 14 / 15$
$\mathbf{1 4}$	Klokocov	7	P 3	$16 / 2 / 15$
$\mathbf{1 5}$	Hrádek	6	P 4	$16 / 10 / 4$
$\mathbf{1 6}$	Terezin	7	P 3	$16 / 14 / 13$
$\mathbf{1 7}$	Redice	2	P 3	$16 / 14 / 13$

France

Geoffrey Orgeur

(Variety and Seed Study and Control Group: GEVES)

Sampling in the different oilseed rape production area

Geograhic distribution of pathotypes

United Kingdom

Francois Dussart (Scotland's Rural College) and Julie Smith (Agricultural Development and Advisory Service)

Clubroot distribution in the UK

- Soil survey 100 sites
- Varietal screen for resistance using 31 RL varieties No new resistance
- Disease and climate change modelling Clubroot will be favoured by climate change scenarios
pH effects on clubroot

Mendel resistance breaking strains

Pathotype determination (Preliminary results)

Newest data on patotypes of Plasmodiophora brassicae in UK:
> Based on Buczacki: 11 pathotypes with high disease severity on ECD 01 to ECD 03

2016 Field	Dominant pathotypes defined by ECD
1	$16 / 02 / 30$
2	$16 / 26 / 04$
3	$16 / 15 / 31$
4	$20 / 31 / 31$
5	$17 / 31 / 31$
6	$16 / 31 / 31$
7	$17 / 31 / 31$
8	$23 / 31 / 31$
9	$17 / 31 / 30$
10	$23 / 31 / 31$

| 2017 |
| :---: | :---: |
Field		Dominant pathotypes		
defined by ECD	$	$	11	$16 / 31 / 31$
:---:	:---:			
12	$17 / 31 / 30$			
13	$16 / 15 / 30$			
14	$*$			
15	$19 / 31 / 30$			
16	$17 / 31 / 30$			
17	$20 / 15 / 30$			
18	$17 / 31 / 30$			
19	$17 / 31 / 30$			
20	$0 / 6 / 0$			

Sweden

Ann-Charlotte Wallenhammar (Rural Economy and Agricultural Society, HS Konsult AB, Örebro)

- Winter OSR - Spring OSR
- Winter OSTR - Spring OSTR

Spring OSR 9505 ha Winter OSR 94038 ha Total OSR 105375 ha

Field assessment clubroot in WOR October 2017

Andersson, G., Norrlund, L., Mellqvist, E., Arvidsson, A. Swedish Board of Agriculture and Pettersson, M. , Andersson, E. Advisory organisations REAS and the Lovang Group
The infection level of P. brassicae in field soil samples was determined by a greenhouse bioassay

> Based on Buczacki: 4 pathotypes with high disease severity on ECD 01 to ECD 04 (31/22/10, 31/16/00, 19/31/31, 18/16/00 (Wallenhammar et al., 2011, unpublished))

Denmark

Ghita Cordsen-Nielsen
(Danish Agriculture \& Food Council F.m.b.A.; SEGES)

Cultivated OSR area in 1000 ha

	2012	2013	2014	2015	2016	2017
Winter oilseed rape	127	176	165	193	162	176
Spring oilseed rape	2	2	1	1	1	1

Monitoring of clubroot in OSR fields, November 2016

- Clubroot is an increasing problem in DK
- Monitored 50 oilseed rape fields in 10 km radius in the area around Haderslev
- Clubroot found in 57 percent of the fields (1-78 percent infected plants)

Crop rotation with oilseed rape in Denmark ($\mathrm{N}=10.660$ OSR Fields)

Number of years without oilseed rape

Number of years without oilseed rape

Geographical distribution of P. brassicae pathotypes in
Denmark $(n=11 ; 2014-2015)$ and Sweden $(n=3 ; 2014)$

Pathotype classification was done at JKI-Braunschweig according to Some et al., 1996

Summary

- Clubroot of oilseed rape is a disease of increasing economic importance in EU
- The highest clubroot infestation occurred in fields where OSR was grown in a shorter rotation
- Clubroot has been found in soils exhibiting a wide pH range from 4.4-8.1, but acidic soils maybe most at risk
- The majority of isolates in EU according to Somé (1996) were pathotypes 1 and 3, respectively, with pathotypes 2,5 and 6 in the minority
- Behind each of the pathotypes as defined by Somé a range of different ECD triplet codes was detected. This gives hint for a extreme variation in pathogenicity of P. brassicae populations
- From all EU populations tested for virulence on cv. Mendel, several isolates were found to be moderately or highly virulent

Thank you for your attention

(Q) SEGES

ceves $\quad \mathbf{j K i}$

