Clubroot Management Update

Clubroot Steering Committee April 30, 2020

Bruce D. Gossen and Mary Ruth McDonald

University of Guelph and AAFC Saskatoon, Canada

Contributions from Afsaneh Sedaghatkish, Sarah Drury, Andrew McLean, Just Robson, Dongniu Wang, Chithra Karunakaran, Gary Peng

Clubroot Management:

- Whole genome sequencing and new virulent pathotypes (published)
- Effect of grass cover crops and rotation crops on resting spore concentrations in soil
- Fumigation and solarization

 Boron as a soil amendment with boron insensitive Brassicas Whole genome sequencing to determine the genome similarity of single-spore isolates and field collections from locations in Canada, the USA, and China:

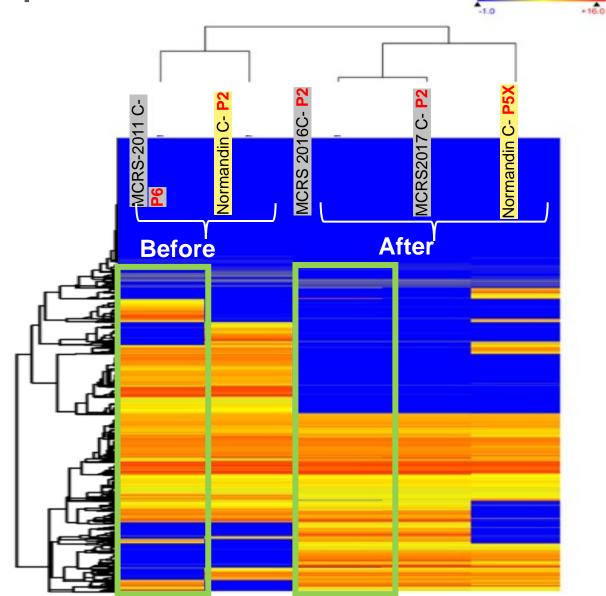
Sedaghatkish et al. BMC Genomics (2019) 20:744 https://doi.org/10.1186/s12864-019-6118-y

RESEARCH ARTICLE

Whole-genome DNA similarity and population structure of *Plasmodiophora* brassicae strains from Canada

Afsaneh Sedaghatkish^{1,2}, Bruce D. Gossen^{2*}⁽⁰⁾, Fengqun Yu², Davoud Torkamaneh^{1,3} and Mary Ruth McDonald¹

Sequenced 43 collections, including 9 single spore isolates, mostly from Canada. They did not cluster by pathotype or host. Some clustered by geographic region.

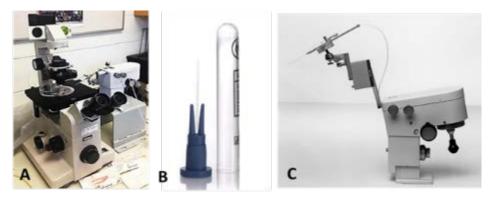


Open Access

BMC Genomics

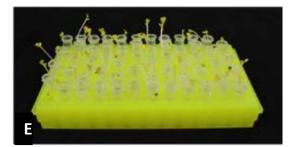
Heat maps of SNPs

Total of 9727 genes in *P. brassicae* genome


Selection, rather than single mutations responsible for the changes

Balancing selection

4


Normandin and MCRS collections before and after the change of pathotype There is about a 50% difference in SNPs from before and after Capturing single resting spores with a micromanipulator- a more efficient method to produce single spore isolates of *P. brassicae*

Micromanipulation of a singe spore

(A) inverted microscope, (B) glass micropipette, C. micromanipulator,& D. isolation plate

(D) selection and collection of a single spore, and (E) placement of a single spore in Hoagland's solution containing a 3-day old canola

Cover crops and rotation crops to stimulate the germination of resting spores

Materials & methods

- Soil with 5 x 10⁵ resting spore per gram
- Crops grown for 8 weeks
- qPCR assessment of resting spores

Crops:

- Shanghai pak choi (*Brassica* rapa L.) susceptible check
- Smooth bromegrass (*Bromus inermis* L.) a common seed lot
- Meadow bromegrass (*B. riparius* R.) cv. Fleet
- Perennial ryegrass (Lolium perenne L.) cv.'s Norlea, All Star, and Fiesta

Afsaneh Sedaghatish Ph.D. thesis

Effect of grass species and cultivar on resting spore concentration of *P. brassicae* in soil (Based on qPCR, n = 6)

Treatment	Grass cultivar	Spore conc. (spores g ⁻¹ soil)	Root dry wt. (g pot ⁻¹)
Pre-plant soil		1.6 x 10 ⁶	
No plant (control)		1.2 x 10 ⁶ a	
Perennial ryegrass	Norlea	5.9 x 10 ⁵ a	6.35 a
	All Star	4.9 x 10 ⁵ a	6.32 a
	Fiesta	2.7 x 10 ⁵ b	2.73 b
Meadow bromegrass	Fleet	5.0 x 10 ⁵ b	6.44 a
Smooth bromegrass	Common	4.6 x 10 ⁵ b	3.85 b

7

The initial resting spore concentration was higher than intended No correlation between resting spore concentration and root weight

What about rotation crops?

Resting spore concentration in soil with different crops

Crop	Cultivar	Spore conc. g ⁻¹ soil
Soybean		469,000 a
No plant (control)		310,000 b
Barley	Trochu	266,000 bc
Field pea	CDC Meade	ow 229,000 bc
Ryegrass	Norlea	183,000 bc
Wheat	AAC Conne	ery 155,000 c

Plants grown for 8 weeks in the soil inoculated with $5x10^5$ resting spores mL⁻¹ based on qPCR (n = 6).

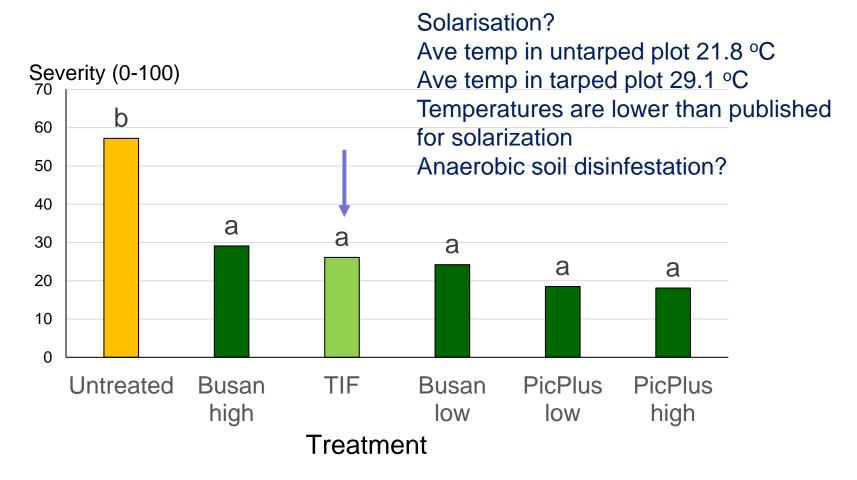
Spring wheat is a good rotation crop and may help to reduce resting spore numbers. Still lots of variability in the data

For a quicker effect: Fumigation and/or solarisation Or boron?

Fumigated in late June or July Chlorpicrin (Pic Plus 164, 280 L/ha) Metam sodium (Busan 150, 300 L/ha) Immediately covered with totally impermeable film (TIF)

Uncovered check and untreated- tarped check

After 2 weeks, the tarp was removed, soil samples taken and a susceptible crop- pak choi – was seeded. Assessed 5 weeks later.


2017 field plot in Ontario with naturally infested high organic matter soil

Untreated untarped

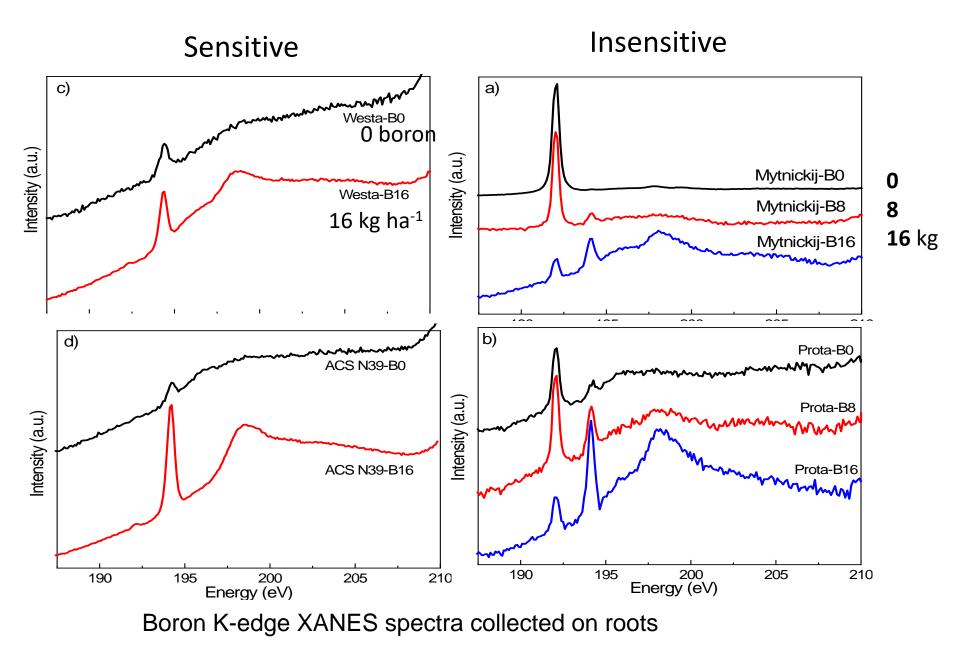
Fumigated

Bioassay with clubroot susceptible pak choi

Clubroot severity in pak choy following fumigation -2019

Busan = metam sodium, PicPlus = chloropicrin

Boron suppresses clubroot development But can be phytotoxic Use boron with boron insensitive varieties?


Boron

No boron

Effect of a drench application of boron at 8 kg/ha on clubroot severity in the field Mean of 10 sensitive and 9 insensitive lines

Next step: Assess plants in the synchrotron (Canada Light Source) to determine boron content of roots and leaves

Changes in spectra with added B indicate more boron-oxygen bonds

Clubroot Management: Conclusions

- Grass cover crops and rotation crops may reduce resting spores in soil faster than if soil was left fallow
 - However, the first results from field trials showed higher resting spores under perennial ryegrass
- New virulent pathotypes are selected from existing genotypes (not recent mutations)
- P. brassica exhibits balancing selection to preserve many genotypes
 - Continue to develop single spore isolates for research
- Solarization using totally impermeable film could be an approach to manage small patches of clubroot.
- Could boron be used to suppress clubroot using boron insensitive lines of B. napus?

Questions?

Acknowledgements

- Canola Council of Canada
- Agriculture and Agri-Food Canada
- Clubroot Mitigation Initiative
- Canola Cluster of Growing Forward 2
- Canadian Agricultural Partnership
- Ontario Canola Growers Association
- University of Guelph HQP Program
- Ontario Agri-Food Innovation Alliance